Browse > Article
http://dx.doi.org/10.14478/ace.2021.1083

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination  

Lee, Hyeryeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lim, Chaehun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Raneun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.6, 2021 , pp. 632-639 More about this Journal
Abstract
In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.
Keywords
WO3-xFx; Vapor phase fluorination; Photocatalysts; Dye;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Singh, V. C. Srivastava, and S. L. Lo, Surface modification or doping of WO3 for enhancing the photocatalytic degradation of organic pollutant containing wastewaters: A review, Mater. Sci. Forum, 855, 105-126 (2016).   DOI
2 W. Li, T. Wang, D. Huang, C. Zheng, Y. Lai, X. Xiao, S. Cai, and W. Chen, Hexagonal WO3·0.33 H2O Hierarchical Microstructure with Efficient Photocatalytic Degradation Activity, Catalysts, 11, 496 (2021).   DOI
3 S.-M. Yun, J. Kim, E. Jeong, J. S. Im, and Y.-S. Lee, Methylene Blue Photodegradation Properties of Anatase/brookite Hybrid TiO 2 Photocatalyst Prepared with Different Acid Catalysts, Appl. Chem. Eng., 22, 21-25 (2011).
4 H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto, Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water, J. Phys. Chem. B, 102, 10707-10711 (1998).   DOI
5 S. Ge, K. W. Wong, S. K. Tam, C. H. Mak, and K. M. Ng, Facile synthesis of WO3-x nanorods with controlled dimensions and tunable near-infrared absorption, Journal of Nanoparticle Research, 20, (2018).
6 T. Kim, G. Baek, S. Yang, J. Y. Yang, K. S. Yoon, S. G. Kim, J. Y. Lee, H. S. Im, and J. P. Hong, Exploring oxygen-affinitycontrolled TaN electrodes for thermally advanced TaOx bipolar resistive switching, Sci. Rep., 8, 8532 (2018).   DOI
7 H. Kim, J. Kim, and S. H. Ahn, Monitoring oxygen-vacancy ratio in NiFe-based electrocatalysts during oxygen evolution reaction in alkaline electrolyte, J. Ind. Eng. Chem., 72, 273-280 (2019).   DOI
8 J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl Mater Interfaces, 4, 4024-4030 (2012).   DOI
9 X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, and J. Yang, Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO(2) Nanoparticles, Materials (Basel), 10, 1398 (2017).   DOI
10 D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, and N. Ohashi, Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies, Chem. Phys. Lett., 401, 579-584 (2005).   DOI
11 L. Gan, L. Xu, S. Shang, X. Zhou, and L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism, Ceram. Int., 42, 15235-15241 (2016).   DOI
12 G. Jin and S. Liu, Preparation and photocatalytic activity of fluorine doped WO3 under UV and visible light, Dig. J. Nanomater. Biostruct., 4, 1179-1188 (2016).
13 M. Liao, L. Su, Y. Deng, S. Xiong, R. Tang, Z. Wu, C. Ding, L. Yang, and D. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review, J. Mater. Sci., 1-32 (2021).
14 B.-G. Park and K.-H. Chung, Visible Light Photocatalytic Properties of Bismuth Ferrite Prepared By Sol-Gel Method, Korean Chem. Eng. Res., 58, 486-492 (2020).
15 J. Zhang, D. Fu, S. Wang, R. Hao, and Y. Xie, Photocatalytic removal of chromium (VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics, J. Ind. Eng. Chem., 80, 23-32 (2019).   DOI
16 E.M. Samsudin and S. B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Appl. Surf. Sci., 391, 326-336 (2017).   DOI
17 A. W. Sleight, Tungsten and molybdenum oxyfluorides of the type MO3-xFx, Inorg. Chem., 8, 1764-1767 (1969).   DOI
18 S. S. Kalanur, Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped WO3, Catalysts, 9, 456 (2019).   DOI
19 K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im, and Y.-S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond, J. Ind. Eng. Chem., 99, 48-54 (2021).   DOI
20 Y. Kang, X. Wu, and Q. Gao, Plasmonic-Enhanced Near-Infrared Photocatalytic Activity of F-Doped (NH4)0.33WO3 Nanorods, ACS Sustain. Chem. Eng., 7, 4210-4219 (2019).   DOI
21 J. C. Gonzalez-Torres, E. Poulain, V. Dominguez-Soria, R. GarciaCruz, and O. Olvera-Neria, C-, N-, S-, and F-Doped Anatase TiO2 (101) with Oxygen Vacancies: Photocatalysts Active in the Visible Region, Int. J. Photoenergy, 2018, 1-12 (2018).
22 M. A. Lange, Y. Krysiak, J. Hartmann, G. Dewald, G. Cerretti, M. N. Tahir, M. Panthofer, B. Barton, T. Reich, and W. G. Zeier, Solid State Fluorination on the Minute Scale: Synthesis of WO3-xFx with Photocatalytic Activity, Adv. Func. Mater., 30, 1909051 (2020).   DOI
23 B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem., 29, 429-434 (1979).   DOI
24 R. Ebrahimi, A. Maleki, Y. Zandsalimi, R. Ghanbari, B. Shahmoradi, R. Rezaee, M. Safari, S. W. Joo, H. Daraei, and S. H. Puttaiah, Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution, J. Ind. Eng. Chem., 73, 297-305 (2019).   DOI
25 C. H. Nguyen and R.-S. Juang, Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse, J. Ind. Eng. Chem., 76, 296-309 (2019).   DOI
26 V. T. Quyen, J. Kim, P.-M. Park, P. T. Huong, N. M. Viet, and P.Q. Thang, Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3, J. Environ. Chem. Eng., 9, 104737 (2021).   DOI
27 M. Ohtaki, H. Sato, H. Fujii, and K. Eguchi, Intramolecularly selective decomposition of surfactant molecules on photocatalytic oxidative degradation over TiO2 photocatalyst, J. Mol. Catal. A: Chem., 155, 121-129 (2000).   DOI
28 M. M. Obeid, C. Stampfl, A. Bafekry, Z. Guan, H. Jappor, C. Nguyen, M. Naseri, D. Hoat, N. Hieu, and A. Krauklis, First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate, PCCP, 22, 15354-15364 (2020).   DOI
29 Y. Zheng, G. Chen, Y. Yu, Y. Zhou, and F. He, Synthesis of carbon doped WO3·0.33H2O hierarchical photocatalyst with improved photocatalytic activity, Appl. Surf. Sci., 362, 182-190 (2016).   DOI
30 A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, and M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem., 97, 111-128 (2021).   DOI
31 P. P. Gonzalez-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, and C. G. Granqvist, A. Ferreira da Silva, Optical band-gap determination of nanostructured WO3 film, Appl. Phys. Lett., 96, 061909 (2010).   DOI
32 K.-M. Kang, J.-H. Jeong, G.-I. Lee, J.-M. Im, H.-J. Cheon, D.-H. Kim, and Y.-C. Nah, Photocatalytic Properties of WO3 Thin Films Prepared by Electrodeposition Method, J. Korean Powder Metall. Inst., 26, 40-44 (2019).   DOI
33 S. Mohammadi, M. Sohrabi, A. N. Golikand, and A. Fakhri, Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology, J. Photochem. Photobiol. B, 161, 217-221(2016).   DOI
34 Y. Liu, Y. Li, W. Li, S. Han, and C. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light, Appl. Surf. Sci., 258, 5038-5045 (2012).   DOI
35 C. Song, C. Li, Y. Yin, J. Xiao, X. Zhang, M. Song, and W. Dong, Preparation and gas sensing properties of partially broken WO3 nanotubes, Vacuum, 114, 13-16 (2015).   DOI