• Title/Summary/Keyword: Photocatalytic

Search Result 1,092, Processing Time 0.025 seconds

Photodegradation of Phenol over TiO2-SiO2 Catalysts Prepared by Sol-gel Method (졸-겔법으로 제조한 TiO2-SiO2촉매에서 페놀의 광분해 반응)

  • 홍성수;이만식;이근대;주창식
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.597-603
    • /
    • 2002
  • Photocatalytic degradation of phenol was carried out with UV-illuminated TiO$_2$-SiO$_2$ in aqueous suspension. TiO$_2$-SiO$_2$ catalysts were prepared by sol-gel method from the titanium isopropoxide and tetraethylorthosilicate at different Ti/Si ratio and some commercial TiO$_2$ catalysts were used as purchased. All catalysts were characterized by X-ray Diffraction(XRD) and BET surface area analyzer. The effect of reaction conditions, such as initial concentration of phenol, reaction temperature and catalyst weight on the photocatalytic activity was studied. In addition, TiO$_2$-SiO$_2$(49: 1) prepared by sol-gel method showed higher activity than commercial TiO$_2$catalysts on the photocatalytic degradation of phenol. The addition of SiO$_2$ into TiO$_2$hepled to increase the thermal stability of titania which suppressed the formation of anatase into rutile. The photocatalytic degradation of phenol showed pseudo-1st order reaction and the degradation rate increases with decreasing initial phenol concentration.

Effect of Methyl Ethyl Ketone and Ethyl Acetate Vapor on Photocatalytic Decomposition of n-Pentane Vapor (n-Pentane 증기의 광촉매 분해 시 Methyl Ethyl Ketone 증기와 Ethyl Acetate 증기의 영향)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1151-1156
    • /
    • 2014
  • The photocatalytic decomposition characteristics of single n-pentane, n-pentane mixed with methyl ethyl ketone (MEK), and n-pentane mixed with ethyl acetate (EA) by cylindrical UV reactor installed with $TiO_2$-coated perforated plane were studied. The effects of the residence time, the inlet gas concentration, and the oxygen concentration were investigated. The removal efficiency of n-pentane was increased with increasing the residence time and the oxygen concentration, but decreased with increasing the inlet concentration of n-pentane. The photocatalytic decomposition rates of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA fitted well on Langmuir-Hinshelwood kinetics equation. The maximum elimination capacities of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA were obtained to be $465g/m^3{\cdot}day$, $217g/m^3{\cdot}day$, and $320g/m^3{\cdot}day$, respectively. The presence of coexisting MEK and EA vapor had a negative effect on the photocatalytic decomposition of n-pentane and the negative effect of MEK was higher than that of EA.

Development for UV/TiO2 Photocatalytic Oxidation Indoor Air Compound Process (광촉매/광산화를 이용한 VOCs 처리장치 개발)

  • Jeon, Bo-Kyung;Choi, Kum-Chan;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.855-864
    • /
    • 2006
  • This study introduces a method to eliminate formaldehyde and benzene, toluene from indoor air by means of a photocatalytic oxidation reaction. In the method introduced, for the good performance of the reaction, the effect and interactions of the $TiO_2$ catalyst and ultraviolet in photocatalytic degradation on the reaction area, dosages of catalysts, humidity and light should be precisely examined and controled. Experiments has been carried out under various intensities of UV light and initial concentrations of formaldehyde, benzene and toluene to investigate the removal efficiency of the pollutants. Reactors in the experiments consist of an annular type Pyrex glass flow reactor and an 11W germicidal lamp. Results of the experiments showed reduction of formaldehyde, benzene and toluene in ultraviolet $/TiO_2/$ activated carbon processes (photooxidation-photocatalytic oxidation-adsorption processes), from 98% to 90%, from 98% to 93% and from 99% to 97% respectively. Form the results we can get a conclusion that a ultraviolet/Tio2/activated carbon system used in the method introduced is a powerful one for th treatment of formaldehyde, benzene and toluene of indoor spaces.

Effect of Benzene, Acetone, and Methyl Mercaptan Vapor on Photocatalytic Decomposition of Toluene Vapor (톨루엔의 광촉매 분해시 벤젠, 아세톤 및 메틸메르캅탄 증기가 미치는 영향)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1971-1976
    • /
    • 2014
  • In this study, the photocatalytic decomposition characteristics of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed methyl mercaptan (MM) by UV reactor installed with $TiO_2$-coated perforated plate were studied. The photocatalytic decomposition rate of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed with MM fitted well on Langmuir-Hinshelwood (L-H) kinetics equation. The maximum elimination capacity was obtained to be $628g/m^3{\cdot}d$ for single toluene, $499g/m^3{\cdot}d$ for toluene mixed with benzene, $318g/m^3{\cdot}d$ for toluene mixed with acetone, and $513g/m^3{\cdot}d$ for toluene mixed with MM, respectively. The negative effect in photocatalytic decomposition of toluene are found to be in the order of acetone>benzene>MM.

Photocatalytic Characteristics of PbS/ZnO/TiO2 Nanotube Composite (PbS/ZnO/TiO2 나노복합체의 광촉매 특성)

  • Lee, Jong-Ho;Heo, Sujeong;Youn, Jeong-Il;Kim, Young-Jig;Kim, In-Ki;Jang, Kyung-Wook;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.569-575
    • /
    • 2017
  • To improve photocatalytic performance, a $PbS/ZnO/TiO_2$ nanotube catalyst was synthesized, and its surface characteristics and photocatalytic efficiency were investigated. The hybrid photocatalysts were produced by anodic oxidation and successive ionic layer adsorption and reaction(SILAR). The photocatalytic efficiency was evaluated using the dye degradation rate. The $PbS/ZnO/TiO_2$ photocatalyst significantly enhanced the photocatalytic activity for dye degradation, which was ascribed to the synergistic effect of their better absorption of solar light and a decrease in the rate of excited electron-hole recombination.

Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis (수열합성법으로 제조된 나노막대 구조 WO3의 광촉매 효과 및 염료 흡착 반응)

  • Yu, Su-Yeol;Nam, Chunghee
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.483-488
    • /
    • 2017
  • Transition-metal oxide semiconductors have various band gaps. Therefore, many studies have been conducted in various application fields. Among these, methods for the adsorption of organic dyes and utilization of photocatalytic properties have been developed using various metal oxides. In this study, the adsorption and photocatalytic effects of $WO_3$ nanomaterials prepared by hydrothermal synthesis are investigated, with citric acid added in the hydrothermal process as a structure-directing agent. The nanostructures of $WO_3$ are studied using transmission electron microscopy and scanning electron microscopy images. The crystal structure is investigated using X-ray diffraction patterns, and the changes in the dye concentrations adsorbed on $WO_3$ nanorods are measured with a UV-visible absorption spectrophotometer based on Beer-Lambert's law. The methylene blue (MB) dye solution is subjected to acid or base conditions to monitor the change in the maximum adsorption amount in relation to the pH. The maximum adsorption capacity is observed at pH 3. In addition to the dye adsorption, UV irradiation is carried out to investigate the decomposition of the MB dye as a result of photocatalytic effects. Significant photocatalytic properties are observed and compared with the adsorption effects for dye removal.

Degradation of MEK using continuous single module photo-catalytic reactor (연속식 광촉매반응기를 이용한 MEK 분해특성 연구)

  • Peng, Mei Mei;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5304-5309
    • /
    • 2013
  • The degradation of methylethylkeone(MEK) was investigated by the continuous single module photocatalytic reactor. Operational conditions were initial concentration of MEK, intensity of photon flux, and activity change according to the long time operation. The photocatalytic degradation was decreased with the increase of MEK concentration, and the degree of decrease was larger at higher flow rate. Removal efficiency of photocatalytic reactor was decreased with the increase of reactor diameter and lamp wavelength under the same residence time condition. Continuous single module photocatalytic reactor was successfully operated without any activity drop during 120hrs operation.

Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2

  • Ali, Asghar;Biswas, Md Rokon Dowla;Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.381-391
    • /
    • 2018
  • In this work, photocatalytic $CO_2$ reduction over a CdSe-graphene-$TiO_2$ nanocomposite has been studied. The obtained material was successfully fabricated via ultrasonic technique. The physical properties of the as-synthesized materials were characterized by some physical techniques. The $TiO_2$ and CdSe dispersed graphene nanocomposite showed excellent results of strong reduction rates of $CO_2$ compared to the results of bare $TiO_2$ and binary CdSe-graphene. An outstanding point of the combination of CdSe-$TiO_2$ and graphene appeared in the form of great photocatalytic reduction capability of $CO_2$. The photocatalytic activity of the asfabricated composite was tested by surveying for the photoreduction of $CO_2$ to alcohol under UV and visible light irradiation, and the obtained results imply that the as-prepared CdSe-graphene-$TiO_2$ nanocomposite is promising to become a potential candidate for the photocatalytic $CO_2$ reduction.

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Synthesis of Mesoporous TiO2 and Its Application to Photocatalytic Activation of Methylene Blue and E. coli

  • Kim, Eun-Young;Kim, Dong-Suk;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.193-196
    • /
    • 2009
  • Mesoporous $TiO_2$ material was synthesized from diblock copolymers with ethylene oxide chains via a sol-gel process in aqueous solution. The properties of these materials were characterized with several analytical techniques including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis. The mesoporous $TiO_2$ materials calcined at 400${^{\circ}C}$ were found to have specific surface areas 212 $m^2g^-1$, average pore sizes 6.2 nm, and their average crystal sizes were found to be 8.2 nm. The photocatalytic activity of mesoporous $TiO_2$ was characterized with UV-Vis spectroscopy, and it was found to be 5.8 times higher than that of Degussa P25 $TiO_2$ (P25). For deactivation of Escherichia coli, mesoporous $TiO_2$ also has high photocatalytic inactivity than that of P25. Such a high photocatalytic activity is explained with large surface area and small crystal size with wormhole-like mesoporous structure.