Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.10.569

Photocatalytic Characteristics of PbS/ZnO/TiO2 Nanotube Composite  

Lee, Jong-Ho (Department of Chemistry, Hanseo University)
Heo, Sujeong (Department of Chemistry, Hanseo University)
Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, In-Ki (Department of Materials Science, Hanseo University)
Jang, Kyung-Wook (Department of Materials Science, Hanseo University)
Oh, Han-Jun (Department of Materials Science, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.27, no.10, 2017 , pp. 569-575 More about this Journal
Abstract
To improve photocatalytic performance, a $PbS/ZnO/TiO_2$ nanotube catalyst was synthesized, and its surface characteristics and photocatalytic efficiency were investigated. The hybrid photocatalysts were produced by anodic oxidation and successive ionic layer adsorption and reaction(SILAR). The photocatalytic efficiency was evaluated using the dye degradation rate. The $PbS/ZnO/TiO_2$ photocatalyst significantly enhanced the photocatalytic activity for dye degradation, which was ascribed to the synergistic effect of their better absorption of solar light and a decrease in the rate of excited electron-hole recombination.
Keywords
photocatalyst; anodizing; SILAR method; dye degradation; photocurrent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. W., Y. He and Y. Zheng, Appl. Catal. B Environ., 168-169, 408 (2015).   DOI
2 F. Li, Y. Jiao, S. Xie and J. Li, J. Power Sources, 280, 373 (2015).   DOI
3 L. Yang, Q.-l. Ma, Y. Cai and Y. M. Huang, App. Surf. Sci., 292, 297 (2014).   DOI
4 Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao and L. Mei, Nanoscale Res. Lett., 8, 67 (2013).   DOI
5 B. Tan and Y. Wu, J. Phys. Chem. B, 110, 15932 (2006).   DOI
6 S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia, Appl. Catal. B Environ., 74, 53 (2007).   DOI
7 B. Zielinska and A. W. Morawski, Appl. Catal. B Environ., 55, 221 (2005).   DOI
8 J.-H. Lee, J.-I.Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang and H.-J. Oh, Ceram. Int., 41, 11899 (2015).   DOI
9 Y.-L. Xie, Z.-X. Li, Z.-G. Xu and H.-L. Zhang, Electrochem. Commun., 13, 788 (2011).   DOI
10 Y. Xu and M. A. A. Schoonen, American Mineralogist, 85, 543 (2000).   DOI
11 P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. A. Kolawole, A. S. Luyt and V. Djokovic, Appl. Phys., A81, 835 (2005).
12 D. H. Yeon, S. M. Lee, Y. H. Jo, J. Moon and Y. S. Cho, J. Mater. Chem. A, 2, 20112 (2014).   DOI
13 J. Tian and G. Cao, Nano Reviews, 4, 22578 (2013).   DOI
14 L. Jin, G. Sirigu, X. Tong, A. Camellini, A. Parisini, G. Nicotra, C. Spinella, H. Zhao, S. Sun, V. Morandi, M. Zavelani-Rossi, F. Rosei and A. Vomiero, Nano Energy, 30, 531 (2016).   DOI
15 Y. Wang, A. Suna, W, Mahler and R. Kasouski, J. Chem, Phys., 87, 7315 (1987).   DOI
16 T. Hirai, Y. Tsubaki, H. Sato and I. Komasawa, J. Chem. Eng. Japan, 28, 468 (1995).   DOI
17 Y. Zhu, R. Wang, W. Zhang, H. Ge and L. Li, App. Surf. Sci., 315, 149 (2014).   DOI