DOI QR코드

DOI QR Code

Photocatalytic Characteristics of PbS/ZnO/TiO2 Nanotube Composite

PbS/ZnO/TiO2 나노복합체의 광촉매 특성

  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Heo, Sujeong (Department of Chemistry, Hanseo University) ;
  • Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, In-Ki (Department of Materials Science, Hanseo University) ;
  • Jang, Kyung-Wook (Department of Materials Science, Hanseo University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University)
  • 이종호 (한서대학교 화학과) ;
  • 허수정 (한서대학교 화학과) ;
  • 윤정일 (성균관대학교 신소재공학부) ;
  • 김영직 (성균관대학교 신소재공학부) ;
  • 김인기 (한서대학교 신소재공학과) ;
  • 장경욱 (한서대학교 신소재공학과) ;
  • 오한준 (한서대학교 신소재공학과)
  • Received : 2017.08.31
  • Accepted : 2017.09.27
  • Published : 2017.10.27

Abstract

To improve photocatalytic performance, a $PbS/ZnO/TiO_2$ nanotube catalyst was synthesized, and its surface characteristics and photocatalytic efficiency were investigated. The hybrid photocatalysts were produced by anodic oxidation and successive ionic layer adsorption and reaction(SILAR). The photocatalytic efficiency was evaluated using the dye degradation rate. The $PbS/ZnO/TiO_2$ photocatalyst significantly enhanced the photocatalytic activity for dye degradation, which was ascribed to the synergistic effect of their better absorption of solar light and a decrease in the rate of excited electron-hole recombination.

Keywords

References

  1. X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. W., Y. He and Y. Zheng, Appl. Catal. B Environ., 168-169, 408 (2015). https://doi.org/10.1016/j.apcatb.2015.01.001
  2. F. Li, Y. Jiao, S. Xie and J. Li, J. Power Sources, 280, 373 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.118
  3. L. Yang, Q.-l. Ma, Y. Cai and Y. M. Huang, App. Surf. Sci., 292, 297 (2014). https://doi.org/10.1016/j.apsusc.2013.11.134
  4. Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao and L. Mei, Nanoscale Res. Lett., 8, 67 (2013). https://doi.org/10.1186/1556-276X-8-67
  5. B. Tan and Y. Wu, J. Phys. Chem. B, 110, 15932 (2006). https://doi.org/10.1021/jp063972n
  6. S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia, Appl. Catal. B Environ., 74, 53 (2007). https://doi.org/10.1016/j.apcatb.2006.12.015
  7. B. Zielinska and A. W. Morawski, Appl. Catal. B Environ., 55, 221 (2005). https://doi.org/10.1016/j.apcatb.2004.08.015
  8. J.-H. Lee, J.-I.Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang and H.-J. Oh, Ceram. Int., 41, 11899 (2015). https://doi.org/10.1016/j.ceramint.2015.05.157
  9. Y.-L. Xie, Z.-X. Li, Z.-G. Xu and H.-L. Zhang, Electrochem. Commun., 13, 788 (2011). https://doi.org/10.1016/j.elecom.2011.05.003
  10. Y. Xu and M. A. A. Schoonen, American Mineralogist, 85, 543 (2000). https://doi.org/10.2138/am-2000-0416
  11. P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. A. Kolawole, A. S. Luyt and V. Djokovic, Appl. Phys., A81, 835 (2005).
  12. D. H. Yeon, S. M. Lee, Y. H. Jo, J. Moon and Y. S. Cho, J. Mater. Chem. A, 2, 20112 (2014). https://doi.org/10.1039/C4TA03433C
  13. J. Tian and G. Cao, Nano Reviews, 4, 22578 (2013). https://doi.org/10.3402/nano.v4i0.22578
  14. L. Jin, G. Sirigu, X. Tong, A. Camellini, A. Parisini, G. Nicotra, C. Spinella, H. Zhao, S. Sun, V. Morandi, M. Zavelani-Rossi, F. Rosei and A. Vomiero, Nano Energy, 30, 531 (2016). https://doi.org/10.1016/j.nanoen.2016.10.029
  15. Y. Wang, A. Suna, W, Mahler and R. Kasouski, J. Chem, Phys., 87, 7315 (1987). https://doi.org/10.1063/1.453325
  16. T. Hirai, Y. Tsubaki, H. Sato and I. Komasawa, J. Chem. Eng. Japan, 28, 468 (1995). https://doi.org/10.1252/jcej.28.468
  17. Y. Zhu, R. Wang, W. Zhang, H. Ge and L. Li, App. Surf. Sci., 315, 149 (2014). https://doi.org/10.1016/j.apsusc.2014.07.116