• Title/Summary/Keyword: Photocatalyst$TiO_2$

Search Result 462, Processing Time 0.031 seconds

The UV/Ozone Stability of PET and Nylon 6 Nanocomposite Films Containing TiO2 Photocatalysts (TiO2 광촉매를 함유한 PET와 나일론 6 나노복합체막의 자외선/오존에 대한 안정성)

  • Jin, Sung-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.88-98
    • /
    • 2014
  • This study is to assess the photocatalytic degradation of PET and Nylon 6 films containing nano-sized $TiO_2$ powders of anatase and rutile types. The PET and Nylon 6 films containing six kinds of the nanoparticles were prepared by melt casting method using a heating press machine. Reflectance in visible region and water contact angles of the irradiated PET and Nylon 6 composite films decreased with increasing UV/$O_3$ irradiation. Also the enhanced hydrophilicity has a close relationship with the increase in the Lewis base parameter, which indicates more oxidized polymer surfaces. The photocatalytic degradation of the nanocomposite films increased with increasing $TiO_2$ content and UV energy, which is more significant with the anatase types rather than the rutile types. The amide linkages in the Nylon 6 seemed to be more susceptible to the UV light compared to the ester groups in the PET, particularly in the presence of the $TiO_2$ photocatalysts. The photoscission and photodegradation of the polymers in the composites produced more degraded structure assisted by the photocatalytic activity of the $TiO_2$ nanoparticles. Also the composite films can bleach the methylene blue dyes more easily under the UV/$O_3$ irradiation, suggesting the photobleaching activity of the $TiO_2$ nanoparticles.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.201-211
    • /
    • 2011
  • The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.

Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photocatalytic Reactors and Evaluation of Its Characteristics (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템의 성능 및 특성 평가)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.574-583
    • /
    • 2021
  • Waste air containing ethanol (100 ppmv) and hydrogen sulfide (10 ppmv) was continuously treated by waste air-treating system composed of two annular photocatalytic reactors (effective volume: 1.5 L) packed with porous SiO2 media carrying TiO2-anatase photocatalyst, one of which was alternately operated for 32 d/run while the other was regenerated by 100 ℃ hot air with 15 W UV(-A)-light on. As its elimination-behavior of ethanol, the removal efficiencies of ethanol at 1st, 2nd and 3rd operation of the photocatalytic reactor system(A), turned out to be ca. 60, 55 and 54%, respectively, at their steady state condition. Unlike the elimination-behavior of ethanol, its hydrogen sulfide-elimination behavior showed repeated decrease of hydrogen sulfide removal efficiency by its resultant arrival at a lower level of steady state condition. Nevertheless, the removal efficiencies of hydrogen sulfide at 1st, 2nd and 3rd operation of the photocatalytic reactor system, turned out to be ca. 80, 75 and 73%, respectively, at their final steady state condition, higher by ca. 20, 20 and 19% than those of ethanol, respectively. Therefore, assuming that adsorption on porous SiO2-photocatalyst carrier was regarded to belong to a reversible deactivation and that decreased % of removal efficiency due to the reversible deactivation of photocatalyst including the adsorption was independent of the number of its use upon regeneration, the increments of the decreased % of removal efficiency of ethanol and hydrogen sulfide, due to an irreversible deactivation of photocatalyst, for the 3rd use of regenerated photocatalyst, compared with the 2nd use of regenerated photocatalyst, were ca. 1 and 2%, respectively, which was insignificant or the less than those of ca. 5 and 5%, respectively, for the 2nd use of regenerated photocatalyst compared with the 1st use of virgin photocatalyst. This trend of the photocatalytic reactor system was observed to be similar to that of the other alternately-operating photocatalytic reactor system.

Photo-Electrochemical Hydrogen Production Over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-Catalysts (P와 B 이온이 함유된 나노 티타니아 광촉매의 광 전기화학적 수소 제조 성능)

  • Kwak, Byeong-Sub;Choi, Hee-Chan;Woo, Jae-Wook;Lee, Ju-Seung;An, June-Bum;Ryu, Si-Gyeong;Kang, Mi-Sook
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.78-82
    • /
    • 2011
  • For effectively photochemical hydrogen production, P (negative semiconductor) and B (positive semiconductor) ions (0.1, 0.2, 0.5, and 1.0 mol%) incorporated $TiO_2$ (P- and B-$TiO_2$) nanometer sized particles were prepared using a solvothermal method as a photocatalyst. The characteristics of the synthesized P- and B-$TiO_2$ photocatalysts were analyzed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), W-visible spectroscopy (UV-Vis), and Photoluminescence spectra (PL). The evolution of $H_2$ from methanol/water (1:1) photo-splitting over B-$TiO_2$ photocatalysts was enhanced compared to those over pure $TiO_2$ and P-$TiO_2$ photocatalysts; 0.42 mL of $H_2$ gas was evolved after 10 h when 0.5 g of a 1.0 mol% B-$TiO_2$ catalyst was used.

Surface Characterization of Photocatalyst TiO$_2$ (증발법을 이용한 축산분뇨의 고농도 폐수처리 기술의 개발)

  • 이영신
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.69-73
    • /
    • 2000
  • 본 연구에서는 오염부하량 측면에서 매우 심각한 영향을 미치고 있는 축산폐수에 대하여 기존의 문제점 등을 분석하고 기존의 처리 방법들이 처리를 제대로 하고 있지 못하는 원인을 분석하며, 이러한 기존의 방법 이외의 대안으로서 증발법을 이용하여 축산 폐수를 처리하고자 하였으며, 이를 폐수처리라는 차원보다는 폐기물의 재활용이라는 측면에서 퇴비화를 함으로서 오염도를 줄임과 동시에 재활용율을 고양시키고자 하였다.

A Comparison of Efficiency of Decolorizing Rhodamine B using Lab-Scale Photocatalytic Reactors : Slurry Reactor, IWCR and PFBR

  • Na, Young-Soo;Lee, Tae-Kyung;Lee, Song-Woo;Lee, Chang-Han;Kim, Do-Han;Park, Young-Seek;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.157-164
    • /
    • 2001
  • The performance of fluidized-bed reactor with Photomedia, immobilized TiO$_2$ onto the porous ceramic ball using a sol-gel method has been studied in this work. A simple model substrate, dilute Rhodamine B (RhB), was decolorized at room temperature. For the purpose of comparison, the slurry reactor and the Inner Wall Coated Reactor (IWCR) were used. The aim of this work was to develop the photocatalytic fluidized bed reactor (PFBR) through contrasting the photodegradability of various reactors such as the TiO$_2$slurry reactor, the inner-wall coated reactor (IWCR). In this study, the RhB was decolorized in three types of reactor. Even though the reaction rate constant of PFBR was lower than that of slurry reactor, PFBR had the advantages of preventing the wash-out of photocatalyst, so it can be operated continuously.

  • PDF

Decomposotion of EtOH and Oxidation of H2S by using UV/Photocatalysis System (UV/Photocatalysis 시스템을 이용한 EtOH의 분해 및 H2S의 산화)

  • Kim, Jin-Kil;Kim, Sung-Su;Hong, Sung-Chang;Lee, Eui-Dong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.297-302
    • /
    • 2013
  • Enhancement of photocatalytic activity of UV/photocatalysis was carried out to oxidize the gaseous $H_2S$ in a tubular reactor coated with photocatalyst of sol type $TiO_2$. EtOH was used as the standard material to select the photocatalyst, and it was confirmed that the reactor activity was dependent on the coated surface characteristics. The selected photocatalytic reactor, which coated with STS-01, showed about 80% conversion when the gas linear velocity was 0.01 m/s and relative humidity was 40%. However, the conversion level of the reaction decreased significantly with increasing gas linear velocity. Pt was loaded on the photocatalyst to enhance and maintain the performance of the reactor, which enhanced the conversion level of $H_2S$ more than 95% under the same experimental condition.

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin;Wu, Dongyao;Liu, Chongyang;Guan, Jingru;Li, Jinze;Huo, Pengwei;Liu, Xinlin;Wang, Qian;Yan, Yongsheng
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.164-174
    • /
    • 2018
  • The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

Effect of pH, Saturated Oxygen, and Back-flushing Media in Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst-loaded PES Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성수처리에서 pH 및 포화산소, 역세척 매체의 영향)

  • Hong, Sung Taek;Park, Jin Yong
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2014
  • The effects of pH, saturated oxygen, and back-flushing media were investigated in hybrid process of tubular ceramic microfiltration and $TiO_2$ photocatalyst-loaded PES (polyethersulfone) beads for advanced drinking water treatment, and compared results of water, nitrogen, or oxygen back-flushing in the viewpoints of membrane fouling resistance ($R_f$), permeate flux (J) and total treated water ($V_T$). $R_f$ decreased, and J and $V_T$ increased as decreasing pH. Turbidity treatment efficiencies were similar at water or nitrogen back-flushing independent of pH, but DOM (dissolved organic matter) treatment efficiency did not have a trend at water back-flushing. $R_f$ at NBF (no back-flushing) with SO (saturated oxygen) was the lower than that at NBF without SO. Also, the DOM treatment efficiency at NBF with SO was the lower than that at NBF without SO. It happened because OH radicals produced by reaction of SO and photocatalyst could dilute with water inside the module. The DOM treatment efficiency of gas back-flushing showed the larger than that of water back-flushing at back-flushig period 10 min. It proved that the adsorption or photo-oxidation of PES beads could be activated by the more effective bead-cleaning of gas back-flushing than water back-flushing.