DOI QR코드

DOI QR Code

관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성수처리에서 pH 및 포화산소, 역세척 매체의 영향

Effect of pH, Saturated Oxygen, and Back-flushing Media in Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst-loaded PES Beads

  • 홍성택 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 환경생명공학과)
  • Hong, Sung Taek (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University)
  • 투고 : 2014.03.26
  • 심사 : 2014.04.19
  • 발행 : 2014.04.30

초록

고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄($TiO_2$) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 pH 및 포화산소, 역세척 매체의 영향을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총처리수량($V_T$) 측면에서 물 또는 질소, 산소 역세척 결과를 비교하였다. pH가 증가할수록 $R_f$는 감소하였고 J과 $V_T$는 증가하였다. 탁도 처리효율은 pH에 상관없이 물 또는 질소 역세척 모두 유사한 값을 보였고, 용존유기물(DOM) 처리효율은 물 역세척 시 일정한 경향을 보이지 않았다. $R_f$는 공급수를 산소로 포화시킨 무역세척(NBF)에서 포화산소(SO)가 없는 NBF보다 낮게 나타났다. DOM 처리효율도 SO가 있는 NBF에서 SO가 없는 NBF보다 낮게 나타났다. 이러한 결과는 SO가 광촉매 $TiO_2$와 반응하여 발생된 OH 라디칼이 모듈 내에 채워진 물에 의해 희석되었기 때문이다. 역세척 주기 10분에서 물 역세척보다 기체 역세척 시 DOM 처리효율은 큰 값을 보였다. 이러한 결과는 기체 역세척이 물 역세척보다 PES 구를 효과적으로 세척함으로써, PES 구에 의한 흡착과 광분해가 활발하게 진행되기 때문이다.

The effects of pH, saturated oxygen, and back-flushing media were investigated in hybrid process of tubular ceramic microfiltration and $TiO_2$ photocatalyst-loaded PES (polyethersulfone) beads for advanced drinking water treatment, and compared results of water, nitrogen, or oxygen back-flushing in the viewpoints of membrane fouling resistance ($R_f$), permeate flux (J) and total treated water ($V_T$). $R_f$ decreased, and J and $V_T$ increased as decreasing pH. Turbidity treatment efficiencies were similar at water or nitrogen back-flushing independent of pH, but DOM (dissolved organic matter) treatment efficiency did not have a trend at water back-flushing. $R_f$ at NBF (no back-flushing) with SO (saturated oxygen) was the lower than that at NBF without SO. Also, the DOM treatment efficiency at NBF with SO was the lower than that at NBF without SO. It happened because OH radicals produced by reaction of SO and photocatalyst could dilute with water inside the module. The DOM treatment efficiency of gas back-flushing showed the larger than that of water back-flushing at back-flushig period 10 min. It proved that the adsorption or photo-oxidation of PES beads could be activated by the more effective bead-cleaning of gas back-flushing than water back-flushing.

키워드

참고문헌

  1. A. W. Zularisam, A. F. Ismaila, and R. Salim, "Behaviours of natural organic matter in membrane filtration for surface water treatment - a review", Desalination, 194, 211 (2006). https://doi.org/10.1016/j.desal.2005.10.030
  2. H. Zhang, X. Quan, S. Chen, H, Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  3. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_{2}$ photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted depositionmethod and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003). https://doi.org/10.1016/S0168-583X(03)00895-4
  4. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  5. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
  6. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  7. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  8. T. H. Bae and T. M. Tak, "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
  9. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  10. K. Azrague, E. Puech-costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  11. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst: 2. Effect of photo-oxidation and adsorption", Membrane Journal, 21, 201 (2011).
  12. I. R. Bellobono, B. Barni, and F. Gianturco, "Pre-industrial experience in advanced oxidation and integral photodegradation of organics in potable waters and waste waters by PHOTHOPERMTM membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  13. R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, "Study on a photocatalytic membrane reactor for water purification", Catal. Today, 55, 71 (2000). https://doi.org/10.1016/S0920-5861(99)00227-8
  14. R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  15. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  16. J. Kleine, K. V. Peinemann, C. Schuster, and H. J. Warnecke, "Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002). https://doi.org/10.1016/S0009-2509(02)00043-X
  17. K. Karakulski, W. A. Morawski, J. Grzechulska, K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Separ. & Purification Technol., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  18. W. Xi and S. U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Wat. Res., 35, 1256 (2001). https://doi.org/10.1016/S0043-1354(00)00378-X
  19. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  20. M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  21. S. T. Hong and J. Y. Park. "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of nitrogen back-flushing period and time", Membrane Journal, 23, 70 (2013).
  22. J. Y. Park, S. W. Park, and H. Byun, "Effect of pH and oxygen back-flushing on hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads", Membrane Journal, 24, 39 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.39
  23. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst: 1. effect of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
  24. M. G. Bounomenna, A. Figoli, I. Spezzano, M. Davoli, and E. Drioli, "New PVDF microcapsules for application in catalysis", Appl. Catal. B: Environ., 80, 185 (2008). https://doi.org/10.1016/j.apcatb.2007.11.028
  25. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_{2}$-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  26. J. Y. Park and S. H. Lee, "Effect of water- back-flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  27. H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
  28. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and $O_{3}$/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  29. M. Cheryan, "Ultrafiltration Handbook", Technomic Pub. Co., Lancater, PA (1984).
  30. Y. Zhao, S. Zhou, and M. Li, "Humic acid removal and easy-cleanability using temperature responsive $ZrO_{2}$ tubular membranes grafted with poly(N-isopropylacrylamide) brush chains", Water Research, 47, 2375 (2013). https://doi.org/10.1016/j.watres.2013.02.004
  31. C. Y. Kim, Y. Y. Park, and S. P. Ryu, "Characteristic of degradation of humic acid using jeju Scoria coated with $WO_{3}/TiO_{2}$ photocatalyst", Korean Society of Urban Environment, 11, 295 (2011).
  32. J. Kim, W. Choi, and H. Park, "Effects of $TiO_{2}$ surface fluorination on photocatalytic degradation of methylene blue and humic acid", Res. Chem. Intermed., 36, 127 (2010). https://doi.org/10.1007/s11164-010-0123-8
  33. J. Y. Park., S. W. Park, and H. Byun, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of water back-flushing period and time", Membrane Journal, 23, 267 (2013).