Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption

세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향

  • Cong, Gao-Si (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin-Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University)
  • 고사총 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 환경생명공학과)
  • Received : 2011.05.30
  • Accepted : 2011.06.25
  • Published : 2011.06.30

Abstract

The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.

본 연구에서는 정수처리용 세라믹 한외여과 빛 광촉매의 혼성공정에서 휴믹산 농도 및 광산화, 흡착의 영향을 알아보았다. 휴믹산 농도 각각 2mg/L와 4 mg/L 일 때 UF 단독 공정 및 광촉매를 투입한 공정, UV를 조사한 공정을 막오염에 의한 저항$(R_f)$ 및 투과선속(J), 총여과부피 $(V_{\Upsilon})$ 측면에서 고찰하였다. 휴믹산 농도가 낮아질수록 $R_f$는 급격히 감소하고 J는 증가하여, 휴믹산 농도 2 mg/L에서 $V_{\Upsilon}$는 가장 높았다. 탁도의 평균 처리효율은 휴믹산 농도가 증가할수록 감소하였으나, 4 mg/L에서 휴믹산의 처리효율이 가장 높았다. 이러한 결과는 낮은 휴믹산 농도에서 휴믹산 대부분이 분리막에 의해 제거되고 막을 통과한 일부 휴믹산은 광촉매에 흡착 산화되어, 처리수의 수질이 휴믹산 2 mg/L 와 4 mg/L 에서 거의 같고 원수의 수질은 4 mg/L에서 더 높기 때문이다. 광산화와 흡착의 영향 실험에서 UF + $TiO_2$ + UV 공정의 J가 가장 높게 유지되어, 180분 운전 후 $V_{\Upsilon}$가 가장 높았다. 휴믹산 및 탁도의 처리효율을 비교한 결과, 휴믹산 농도가 2 mg/L 에서 4mg/L로 증가하였을 때 광산화 보다 광촉매 흡착이 더 주요한 역할을 하였다.

Keywords

References

  1. H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_2$ photocatalysts on super-hydrophobic porous teflon membrane by anion assisted depositionmethod and their self-cleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003). https://doi.org/10.1016/S0168-583X(03)00895-4
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. H. C. Oh, "Photocatalytic degradation characteristics of organic matter by highly pure $TiO_2$ nanocrystals", Master Dissertation, Kangwon National Univ., Chuncheon, Korea (2006).
  5. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
  6. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  7. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  8. T. H. Bae and T. M. Tak, "Effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249, 1 (2005). https://doi.org/10.1016/j.memsci.2004.09.008
  9. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  10. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  11. J. H. Park, "Technology and applications of ceramic membranes", NICE, 21 33 (2003).
  12. S. H. Hyun, "Present status and preparation technology of ceramic membranes", Membrane Journal, 3, 1 (1993).
  13. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst: 1. Effect of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
  14. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_2$-back-flushing in multichannels ceramIc mIcrofiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  15. J. Y. Park and S. H. Lee, "Effect of water-back-flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  16. H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
  17. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and $O_3$/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  18. M. Cheryan, "Ultrafiltration Handbook", Technomic Pub. Co, Lancater, PA (1984).
  19. J. Y. Park and G. S. Lee, "Advanced water treatment of high turbidity source by hybrid process of photocatalyst and ceramic microfiltration: effect of organic materials in water-back-flushing", Membrane Journal, 21, 72 (2011).