• Title/Summary/Keyword: Photo-mask

Search Result 93, Processing Time 0.03 seconds

Top gate ZnO-TFT driving AM-OLED fabricated on a plastic substrate

  • Hwang, Chi-Sun;Kopark, Sang-Hee;Byun, Chun-Won;Ryu, Min-Ki;Yang, Shin-Hyuk;Lee, Jeong-Ik;Chung, Sung-Mook;Kim, Gi-Heon;Kang, Seung-Youl;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1466-1469
    • /
    • 2008
  • We have fabricated 2.5 inch QQCIF AM-OLED panel driven by ZnO-TFT on a plastic substrate for the first time. The number of photo mask for the whole panel process was 5 and the TFT structure was top gate with active protection layer as a first gate insulator. Optimizing the process for the substrate buffer layer, active layer, ZnO protection layer, and gate insulator was key factor to achieve the TFT performance enough to drive OLED. The ZnO TFT has mobility of $5.4\;cm^2/V.s$, turn on voltage of -6.8 V, sub-threshold swing of 0.39 V/decade, and on/off ratio of $1.7{\times}10^9$. Although whole process temperature is below $150^{\circ}C$ to be suitable for the plastic substrate, performance of ZnO TFT was comparable to that fabricated at higher temperature on the glass.

  • PDF

The World's Largest 100inch TFT-LCD for HDTV and Public Display Application

  • Kang, I.B.;Jin, H.C.;Lee, S.H.;Jang, E.S.;Moon, H.M.;Oh, C.H.;Yeo, S.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.281-285
    • /
    • 2006
  • Recently LG.Philips LCD (hereafter "LPL") has announced the development of the world's largest 100-inch TFT-LCD with Advanced Super IPS technology. This magnificent LCD achieves the feature of a full high definition resolution $1920{\times}1080(16:9)$, 600nit brightness, 3000:1 dynamic contrast ratio, 92% color gamut, 180 degree viewing angle, and 5msec response time at all grays, targeted for HDTV and public display applications. Some unique technologies such as Cu bus line, advanced wide view polarizer, and high color gamut lamp were applied. A new stitching free technology was developed to overcome the size limitation of photo mask in both the TFT and CF processes. The size of the panel (100-inch) based on the wide format (16:9) is determined by the maximum efficiency of world's $1^{st}$ seventh generation line (glass size:$1950{\times}2250mm$) in LPL's Paju display cluster. In this paper, we will discuss the issues of 100-inch TFT-LCD.

  • PDF

Deformation Invariant Optical Correlator Using Photorefractive Medium (광굴절 매질을 이용한 공간계 불변 광상관기에 관한 연구)

  • Kim, Ran-Sook;Ihm, Jong-Tae;Son, Hyon;Park, Han-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.97-101
    • /
    • 1989
  • Scale and rotation invariant polar-logarithmic coordinate transformation is used to achieve deformation invariant pattern recognition. The coordinate transformation is produce by a computer generated hologram (CGH). The mask fabricated by a photo (UV light) pattern generator for the 1nr-$theta$ coordinate transformation is made of the CGH whose transmission function is derived by the use of Lee's method. The optically produced coordinate transformed function is derived by the use of Lee's method. The optically produced coordinate transmission input pattern is interfaced on real-time holography. Variations of autocorrelation for scaled and rotated input patterns are suggested experimentally using implemented optical correlator.

  • PDF

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

Design and Analysis of 16 V N-TYPE MOSFET Transistor for the Output Resistance Improvement at Low Gate Bias (16 V 급 NMOSFET 소자의 낮은 게이트 전압 영역에서 출력저항 개선에 대한 연구)

  • Kim, Young-Mok;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2008
  • In this paper we proposed a new source-drain structure for N-type MOSFET which can suppress the output resistance reduction of a device in saturation region due to soft break down leakage at high drain voltage when the gate is biased around relatively low voltage. When a device is generally used as a switch at high gate bias the current level is very important for the operation. but in electronic circuit like an amplifier we should mainly consider the output resistance for the stable voltage gain and the operation at low gate bias. Hence with T-SUPREM simulator we designed devices that operate at low gate bias and high gate bias respectively without a extra photo mask layer and ion-implantation steps. As a result the soft break down leakage due to impact ionization is reduced remarkably and the output resistance increases about 3 times in the device that operates at the low gate bias. Also it is expected that electronic circuit designers can easily design a circuit using the offered N-type MOSFET device with the better output resistance.

Effect of surface roughness of AZO thin films on the characteristics of OLED device (AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask (Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성)

  • Kim, Jong-Ock;Lim, Kee-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.67-71
    • /
    • 2014
  • An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.

Simulation Study of a Large Area CMOS Image Sensor for X-ray DR Detector with Separate ROICs (센서-회로 분리형 엑스선 DR 검출기를 위한 대면적 CMOS 영상센서 모사 연구)

  • Kim, Myung Soo;Kim, Hyoungtak;Kang, Dong-uk;Yoo, Hyun Jun;Cho, Minsik;Lee, Dae Hee;Bae, Jun Hyung;Kim, Jongyul;Kim, Hyunduk;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • There are two methods to fabricate the readout electronic to a large-area CMOS image sensor (LACIS). One is to design and manufacture the sensor part and signal processing electronics in a single chip and the other is to integrate both parts with bump bonding or wire bonding after manufacturing both parts separately. The latter method has an advantage of the high yield because the optimized and specialized fabrication process can be chosen in designing and manufacturing each part. In this paper, LACIS chip, that is optimized design for the latter method of fabrication, is presented. The LACIS chip consists of a 3-TR pixel photodiode array, row driver (or called as a gate driver) circuit, and bonding pads to the external readout ICs. Among 4 types of the photodiode structure available in a standard CMOS process, $N_{photo}/P_{epi}$ type photodiode showed the highest quantum efficiency in the simulation study, though it requires one additional mask to control the doping concentration of $N_{photo}$ layer. The optimized channel widths and lengths of 3 pixel transistors are also determined by simulation. The select transistor is not significantly affected by channel length and width. But source follower transistor is strongly influenced by length and width. In row driver, to reduce signal time delay by high capacitance at output node, three stage inverter drivers are used. And channel width of the inverter driver increases gradually in each step. The sensor has very long metal wire that is about 170 mm. The repeater consisted of inverters is applied proper amount of pixel rows. It can help to reduce the long metal-line delay.

Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix (SGLDM을 이용한 문서영상의 블록 분류)

  • Kim Joong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1347-1359
    • /
    • 2005
  • We propose an efficient block classification of the document images using the second-order statistical texture features computed from spatial gray level dependence matrix (SGLDM). We studied on the techniques that will improve the block speed of the segmentation and feature extraction speed and the accuracy of the detailed classification. In order to speedup the block segmentation, we binarize the gray level image and then segmented by applying smoothing method instead of using texture features of gray level images. We extracted seven texture features from the SGLDM of the gray image blocks and we applied these normalized features to the BP (backpropagation) neural network, and classified the segmented blocks into the six detailed block categories of small font, medium font, large font, graphic, table, and photo blocks. Unlike the conventional texture classification of the gray level image in aerial terrain photos, we improve the classification speed by a single application of the texture discrimination mask, the size of which Is the same as that of each block already segmented in obtaining the SGLDM.

  • PDF