• Title/Summary/Keyword: Photo-current

Search Result 414, Processing Time 0.03 seconds

Study on the Photocatalytic Characteristic and Activity of Cu2O/TiO2 Heterojunction Prepared by Ultrasonification (초음파 합성 적용 Cu2O/TiO2 이종접합 소재의 특성 및 활성도 평가에 관한 연구)

  • Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1213-1222
    • /
    • 2020
  • In the current study, a Cu2O/TiO2 photoinduced nanocomposite materials prepared by ultrasonification method was evaluated the photocatalytic oxidation efficiency of volatile organic compounds (BTEX) under visible-light irradiation. The results of XRD confirmed the successful preparation of photoinduced nanocomposite materials. However, diffraction peaks belonging to TiO2 were not confirmed for the Cu2O/TiO2. The possible reason for the absence of Cu2O peak is their low content and small particle size. The result of uv-vis spectra exhibited that the fabricated Cu2O/TiO2 can be activated under visible light irradiation. The FE-SEM/EDS and TEM showed the formation of synthesized nanocomposites and componential analysis in the undoped TiO2 and Cu2O/TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O/TiO2 were higher than undoped TiO2. According to light sources, the average oxidation efficiencies for BTEX by Cu2OT-0.5 were exhibited in the orer of 8 W day light > violet LEDs > white LEDs. However, the photocatalytic oxidation efficiencies normalized to supplied electric power were calculated to be in the following order of violet LEDs > white LEDs > 8 W day light, indicating that the LEDs could be a much more energy efficient light source for the photo-oxidation of gaseous BTEX using Cu2O/TiO2.

Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment

  • Tan, Yongjun;Luo, Xuedan;Mao, Mingfu;Shu, Dehua;Shan, Wenfei;Li, Guizhi;Guo, Dongcai
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1403-1409
    • /
    • 2018
  • In the present study, the $SrMoO_4:Eu^{3+}$ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of $SrMoO_4:Eu^{3+}$ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of $Eu^{3+}$. The optimal synthesis conditions were obtained: hydro-thermal temperature is $145^{\circ}C$, co-precipitation temperature is $35^{\circ}C$, the calcining time is 2.5 h, and the doping amount of activator $Eu^{3+}$ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about $0.2{\mu}m$. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that $SrMoO_4:Eu^{3+}$ phosphor efficiently convert radiation of 394 nm-592 and 616 nm for red light, and the luminescence intensity of $SrMoO_4:Eu^{3+}$ phosphors is improved. $SrMoO_4:Eu^{3+}$ phosphors may be a potential application for enhancing the efficiency of white LEDs.

Development of Smart Medicine Management Application (스마트 약물 복용 관리 앱 개발)

  • Lee, Dong-Hyeon;Park, Yea-Jin;Hwang, Seok-Soon;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.313-318
    • /
    • 2021
  • In order to treat a disease, it is necessary to take the medication on time, but many people often violate or forget the time they take the medicine. Applications are emerging to solve these problems using information technology. However, for existing applications, it is difficult to use because it provides only a notification functions, user interface is inconvenient, and photo registration of the medication is impossible. To solve these problems, the study developed a smart medicine management application that allows users to set up their taking routines, check if they are taking them, search hospitals and pharmacies, and attach images of medicines they are taking. Through this appliaction, it is possible to reduce the frequency of forgetting the time taken and to take accurate medication by checking the actual image. It also supports the setting of a taking routine to support multiple medications with different taking cycles. It can also provide information about hospital and pharmacies close to their current location to increase access to hospital and pharmacies.

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

Elucidating the Optoelectronic Properties of Metal Halide Perovskites (페로브스카이트 소재의 광전자 특성 분석)

  • Lee, Wonjong;Choi, Hajeong;Lim, Jongchul
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.5
    • /
    • pp.1-14
    • /
    • 2021
  • 유무기 하이브리드 금속-할라이드계 페로브스카이트(organic-inorganic metal halide perovskite) 페로브스카이트 반도체 소재는 광전자 소자와 소재 연구에 새로운 연구 흐름을 만들고 있다. 태양전지 성능이 불과 과거 몇 년 사이의 짧은 연구 기간에도 불구하고, 광-전 변환 소자 중에서도 단일 소자와 적층 소자(tandem)에서 높은 광-전 변환 효율을 나타내기 때문이다. 이러한 급격한 연구 성과와 성장에도 불구하고, 페로브스카이트 소재의 다양한 광전자 특성의 평가와 결과에 대한 논의가 필요한 상황이다. 특히 내부 이온 이동이 광전자 원거리 이동 특성 평가와 해석에 영향을 주는 경우, 페로브스카이트 소재를 기반으로 한 다양한 광전자 소자의 성능 향상과 해석에 여전히 모호함을 준다. 달리 얘기하면, 이 소재의 기초 특성을 이해하고자 적용하는 다양한 기존 특성 평가 분석법의 활용과 해석에도 복잡한 영향을 미치고 있다고 할 수 있다. 이러한 페로브스카이트 소재 내에서 광전자 원거리 이동을 측정하는 새로운 방법을 소개하고자 한다. 첫 번째 방법으로, Quasi-steady 상태에서 광전도도를 전기적 특성으로 측정하고, 광조사 하에 투과 및 반사를 광학적으로 측정하여, 전도도와 광전자 밀도를 동시에 평가하는 방법으로, photo-induced transmission and reflection (PITR) 분광분석법이다. 이 분광분석법은 실제 소자의 구동조건을 구현한 상태에서 광전자의 원거리 이동에서 발생하는 광전자 밀도 변화를 반영한 광전자 이동도 특성 평가라는 장점을 가지고 있다. 두 번째 방법으로, 기존의 연속 전압 인가 방법 대신 펄스형 전압 인가 방식을 도입하는 방법으로, pulsed voltage space charge limited current (PV-SCLC) 분석법이다. 이는 펄스형 전압 인가 방법으로 이온의 이동을 최소화하여, 전류-전압 측정에서 히스테리시스가 없고 측정결과의 재현성과 신뢰도가 매우 높은 장점이 있다.

Photothermoelectric Effect of Graphene-polyaniline Composites (그래핀-폴리 아닐린 복합체의 광열전 효과 연구)

  • Choi, Jongwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.434-439
    • /
    • 2021
  • Graphene and polyaniline with thermoelectric properties are one of the potential substitutes for inorganic materials for flexible thermoelectric applications. In this study, we studied the photo-induced thermoelectric effect of graphene-polyaniline composites. The graphene-polyaniline composites were synthesized by introducing an amine functional group to graphene oxide for covalently connecting graphene and polyaniline, reducing the graphene oxide, and then polymerizing the graphene oxide with aniline. Graphene-polyaniline composites were prepared by changing the aniline contents in order to expect an optimal photothermoelectric effect, and their structural properties were confirmed through FT-IR and Raman analysis. The photocurrent and photovoltage characteristics were analyzed by irradiating light asymmetrically without an external bias and the current and voltage with various aniline contents. While the photocurrent trends to the electrical conductivity of the graphene-polyaniline composites, the photovoltage was related to the temperature change of the graphene-polyaniline composite, which was converted into thermal energy by light.

The Fabrication of $n^+-p^+$ InP Solar Cells by the Diffusion of Sulphur (S확산에 의한 $n^+-p^+$ InP 태양전지의 제작)

  • Jung, Ki-Ung;Kim, Seon-Tai;Moon, Dong-Chan
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.60-65
    • /
    • 1990
  • [ $n^+-p^+$ ] InP homojunction solar cells were fabricated by thermal diffusion of sulphur into a $p^+$-InP wafer($p=4{\times}10^{18}cm^{-3}$), and a SiO film($600{\AA}$ thick) was coated on the $n^+$ layer as an antireflection(AR) coating by an e-beam evaporator. The volume of the cells were $5{\times}5{\times}0.3mm^3$. The front contact grids of the cells with 16 finger pattern of which width and space were $20{\mu}m$ and $300{\mu}m$ respectively, were formed by photo-lithography technique. The junction depth of sulphur were as shallow as about 0.4r m We found out the fabricated solar cells that, with increasing the diffusion time, short circuit current densities($J_{sc}$), series resistances($R_s$) and energy conversion efficiencies(${\eta}$) were increased. The cells show good spectral responses in the region of $5,000-9,000{\AA}$. The short circuit current density, the open circuit voltage( $V_{oc}$), the fill factor(F.F) and the energy conversion efficiency of the cell were $13.16mA/cm^2$, 0.38V, 53.74% and 10.1% respectively.

  • PDF

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells (염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성)

  • Park, Kyung-Hee;Jin, En-Mei;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF

A Study on the Aspect of Space Change to Seokpajeong garden(石坡亭) in the Late Joseon Dynasty (조선후기 원림 석파정(石坡亭)의 공간변화양상에 관한 고찰)

  • Lee, Won-Ho;Kim, Dong-Hyun;Kim, Jae-Ung;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • This study aims to comprehend that Seokpajeong garden for aspect of space change. Spatial characteristics according to the transfer of ownership are classified as period. And investigate the aspect of space change in Seokpajeong garden based on literature and painting, newspaper, photo. The results were as follows. First, Investigate the construction and change of Seokpajeong garden. Accordingly, spatial characteristics of Seokpajeong garden are classified into three period. 1st period is Kim-Heung Keun owned Samgyedong-jungsa garden. 2nd period is Daewongun hold Seokpajeong garden. 3rd period is damaged original form of Seokpajeong garden from Korean War to current time inclusive. Secondly, Kim-Heung Keun owned Samgyedong-jungsa garden has characteristics of water system centric space and many buildings. In addition accept foreign culture like chinese pavilion and Byeoldang Villa. and plant unique flower and leaf in garden. Thirdly, According to Seokpajeong garden folding screen, Daewongun owned Seokpajeong garden accept organization of space in Samgyedong garden. But different locations of Sarangchae in folding screen means possibility of move building to current position. So, additional historical research is required with representation of chinese pavilion location. Fourthly, Seokpajeong garden was damaged from original form to frequent changes of ownership. Transform of geographical features and water system as well as Anchae and Sarangchae, back side of a outbuilding are only the remained among many buildings. Also, Seokpajeong garden is more fell to the subsidiary facility of Seoul Museum than Wonrim. Therefore restoration and recovery of original form are urgent.