Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.005

Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment  

Tan, Yongjun (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Luo, Xuedan (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Mao, Mingfu (Zhejiang Qianhe Biotech Lnc.)
Shu, Dehua (China Geo Engineering Corporation)
Shan, Wenfei (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Li, Guizhi (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Guo, Dongcai (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
Abstract
In the present study, the $SrMoO_4:Eu^{3+}$ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of $SrMoO_4:Eu^{3+}$ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of $Eu^{3+}$. The optimal synthesis conditions were obtained: hydro-thermal temperature is $145^{\circ}C$, co-precipitation temperature is $35^{\circ}C$, the calcining time is 2.5 h, and the doping amount of activator $Eu^{3+}$ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about $0.2{\mu}m$. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that $SrMoO_4:Eu^{3+}$ phosphor efficiently convert radiation of 394 nm-592 and 616 nm for red light, and the luminescence intensity of $SrMoO_4:Eu^{3+}$ phosphors is improved. $SrMoO_4:Eu^{3+}$ phosphors may be a potential application for enhancing the efficiency of white LEDs.
Keywords
$SrMoO_4$; Hydro-thermal co-precipitation method; Orthogonal experiment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Lu, L. Cheng, H. Zhong, J. Sun, J. Wan, Y. Tian, B. Chen, Dependence of upconversion emission intensity on $Yb^{3+}$ concentration in $Er^{3+}$/$Yb^{3+}$ co-doped flake shaped $Y_2(MoO_4)_3$ phosphors, J. Phys. D Appl. Phys. 43 (2010), https://doi.org/10.1088/0022-3727/43/8/085404.
2 S. Dutta, S. Som, A.K. Kunti, V. Kumar, S.K. Sharma, H.C. Swart, H.G. Visser, Structural and luminescence responses of $CaMoO_4$ nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: elemental and spectral stability, Acta Mater. 124 (2017) 109-119, https://doi.org/10.1016/j.actamat.2016.11.002.   DOI
3 Q. Xiao, L. Xiao, Y. Liu, X. Chen, Y. Li, Synthesis and luminescence properties of needle-like $SrAl_2O_4:Eu$, Dy phosphor via a hydrothermal co-precipitation method, J. Phys. Chem. Solid. 71 (2010) 1026-1030, https://doi.org/10.1016/j.jpcs.2010.04.017.   DOI
4 Y.T. Yin, Q.H. Chen, T.T. Yan, Q.H. Chen, Synthesis of silica modified large-sized hydroxyapatite whiskers by a hydrothermal Co-Precipitation method, Key Eng. Mater. 645-646 (2015) 1339-1344, https://doi.org/10.4028/www.scientific.net/KEM.645-646.1339.   DOI
5 J. Zhu, D.A.S. Chew, S. Lv, W. Wu, Optimization method for building envelope design to minimize carbon emissions of building operational energy consumption using orthogonal experimental design (OED), Habitat Int. 37 (2013) 148-154, https://doi.org/10.1016/j.habitatint.2011.12.006.   DOI
6 L. Su, J. Zhang, C. Wang, Y. Zhang, Z. Li, Y. Song, T. Jin, Z. Ma, Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments, Appl. Energy 163 (2016) 201-210, https://doi.org/10.1016/j.apenergy.2015.11.014.   DOI
7 A. Escudero, C. Carrillo-Carrión, M.V. Zyuzin, W.J. Parak, Luminescent rare-earthbased nanoparticles: a summarized overview of their synthesis, functionalization, and applications, Top. Curr. Chem. 374 (2016), https://doi.org/10.1007/s41061-016-0049-8.   DOI
8 A. Khanna, P.S. Dutta, Tunable color temperature solid state white light source using flux grown phosphor crystals of $Eu^{3+}$, $Dy^{3+}$ and $Tb^{3+}$ activated calcium sodium molybdenum oxide, Opt. Mater. (Amst). 37 (2014) 646-655, https://doi.org/10.1016/j.optmat.2014.08.009.   DOI
9 Y.C. Lin, M. Karlsson, M. Bettinelli, Inorganic phosphor materials for lighting, Top. Curr. Chem. 374 (2016) 374-421, https://doi.org/10.1007/s41061-016-0023-5.
10 C. Litterscheid, S. Kruger, M. Euler, A. Dreizler, C. Wickleder, B. Albert, Solid solution between lithium-rich yttrium and europium molybdate as new efficient redemitting phosphors, J. Mater. Chem. C. 4 (2016) 596-602, https://doi.org/10.1039/C5TC02515J.
11 B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells, Phys. Chem. Chem. Phys. 11 (2009) 11081, https://doi.org/10.1039/b913877c.   DOI
12 L.Y. Zhang, W.W. Fu, G.H. Zheng, Z.X. Dai, Y.N. Zhu, J.J. Mu, Morphology and luminescent properties of $SrMoO_4:Eu^{3+}$, $Dy^{3+}$, J. Mater. Sci. Mater. Electron. 27 (2016) 5164-5174, https://doi.org/10.1007/s10854-016-4409-5.   DOI
13 J. Li, J. Yan, D. Wen, W.U. Khan, J. Shi, M. Wu, Q. Su, P.A. Tanner, Advanced red phosphors for white light-emitting diodes, J. Mater. Chem. C. 4 (2016) 8611-8623, https://doi.org/10.1039/C6TC02695H.   DOI
14 D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, I. Voronina, Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure, Phys. Status Solidi C Conf. 2 (2005) 65-68, https://doi. org/10.1002/pssc.200460112.
15 X. Liu, L. Li, H.M. Noh, S.H. Park, J.H. Jeong, H.K. Yang, K. Jang, D.S. Shin, Synthesis and photoluminescence of novel 3D flower-like $CaMoO_4$ architectures hierarchically self-assembled with tetragonal bipyramid nanocrystals, Opt. Mater. (Amst). 43 (2015) 10-17, https://doi.org/10.1016/j.optmat.2015.02.014.   DOI
16 X. Qiao, T. Tsuboi, Emission from Mo-O charge-transfer state and $Yb^{3+}$ emission in $Eu^{3+}$-doped and nondoped molybdates under UV excitation, J. Am. Ceram. Soc. 100 (2017) 1440-1451, https://doi.org/10.1111/jace.14679.   DOI
17 S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadam, Energy transfer dynamics and luminescence properties of $Eu^{3+}$ in $CaMoO_4$ and $SrMoO_4$, Dalton Trans. 44 (2015) 18957-18969, https://doi.org/10.1039/C5DT03280F.   DOI
18 C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang, X. Li, Facile synthesis and photocatalytic application of hierarchical mesoporous $Bi_2MoO_6$ nanosheet-based microspheres, CrystEngComm 14 (2012) 3602, https://doi.org/10.1039/c2ce06757a.   DOI
19 W. Bi, Q. Meng, W. Sun, Luminescent properties and energy transfer mechanism of $NaGd(MoO_4)_2:Sm^{3+}$, $Eu^{3+}$ phosphors, Ceram. Int. 42 (2016) 14086-14093, https://doi.org/10.1016/j.ceramint.2016.06.017.
20 M. Bazarganipour, Synthesis and characterization of $BaMoO_4$ nanostructures prepared via a simple sonochemical method and their degradation ability of methylene blue, Ceram. Int. 42 (2016) 12617-12622, https://doi.org/10.1016/j.ceramint.2016.04.151.   DOI
21 S. Cho, Photoluminescence properties of $BaMoO_4:RE^{3+}$ (RE = Eu, Sm, Dy, Tb, Tm) phosphors, J. Kor. Phys. Soc. 69 (2016) 1479-1484, https://doi.org/10.3938/jkps.69.1479.   DOI
22 C. Shivakumara, R. Saraf, $Eu^{3+}$-activated $SrMoO_4$ phosphors for white LEDs applications: synthesis and structural characterization, Opt. Mater. (Amst). 42 (2015) 178-186, https://doi.org/10.1016/j.optmat.2015.01.006.   DOI