• Title/Summary/Keyword: Photo-catalytic

검색결과 91건 처리시간 0.044초

광산폐수 내 시안 제거를 위한 TiO2와 UV-LED를 이용한 광촉매 산화 (TiO2-catalytic UV-LED Photo-oxidation of Cyanide Contained in Mine Wastewater)

  • 김성희;이상우;조현구;김영호;김순오
    • 한국광물학회지
    • /
    • 제27권4호
    • /
    • pp.223-233
    • /
    • 2014
  • 광산에서 순도 높은 금은을 추출하기 위해 청화법을 이용해 왔다. 이러한 광산 활동에서 많은 양의 시안이 사용되어 왔으며 이에 따라 고농도의 시안을 함유한 광산폐수가 발생되어 광산 주변 지역의 수계를 오염시킬 수 있다. 본 연구에서는 이러한 시안함유 광산폐수 및 침출수로부터 시안을 제거하기 위하여 $TiO_2$ 광촉매와 UV-LED 광원을 이용한 광산화 공정에 대하여 연구하였다. 기존 광산화 공정에서는 주로 UV 램프가 광원으로 많이 사용되었지만 여러 가지 단점으로 인하여 본 연구에서는 그 대체 광원으로 UV-LED의 적용 가능성을 평가하였다. 세 종류의 $TiO_2$의 광산화 효율을 평가한 결과, 아나타제와 루틸이 혼합된 Degussa P25가 광산화 효율이 가장 좋은 것으로 확인되었다. 또한 형태와 파장이 다른 네 종류의 UV-LED를 비교 평가한 결과, 365 nm 램프형 > 365 nm 캔형 > 280 nm 캔형 > 420 nm 램프형 순으로 제거효율이 좋은 것으로 나타났다. 본 연구는 UV-LED는 기존의 UV 램프의 단점을 극복할 수 있는 대체광원으로서 광산화 공정에 적용 가능하다는 것을 입증하였으며, 시안의 광산화 효율은 $TiO_2$ 광촉매의 종류에도 영향을 받는다는 것을 확인하였다.

Removal of Volatile Organic Compounds by Photo-Catalytic Oxidation

  • Lee, Byeong-Kyu;Jung, Kwang-Ryun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제16권E호
    • /
    • pp.39-46
    • /
    • 2000
  • Volatile Organic Compounds (VOCs) are considered as the precursors of atmospheric ozone and photochemical smog formation. In particular, chemical plants have produced a lot of VOCs and thus they have been forced to reduce or remove air emissions from the on-site chemical facilities. For the effective removal of VOCs produced in the chemical plants, the authors employed a titanium oxide(TiO$_2$) mediated photo-catalytic oxidation method. The initiation methods employed in this study to produce oxygen radicals for th photo-catalytic oxidation of the VOCs were Ultra-Violet(UV), Non-Thermal Plasma(NTS), and a combination of Uv and NTP. This study focused on a comparison of the removal efficiencies of VOCs as a function of the initiation method such as NTP and/or UV techniques. Removal efficiency change of VOCs as was investigated as a function of the wavelength of the UV lamp(254, 302, and 365 nm) and the degree of TiO$_2$ coating (10 and 30%). In this study, it was identified that removal efficiencies if the VOCs under the normal air environment were much better than those under the nitrogen gas environment containing small amount of oxygen. Removal efficiency by NTP technique was much better than the UV or the combination of UV and NTP techniques. In a comparison if UV wavelengths employed, it was found that shorter wavelength showed better removal efficiency, compared with longer ones. When the removal efficiencies of VOCs were compared in terms of the degree of TiO$_2$ coating, the higher TiO$_2$coating showed better removal efficiency that the lower TiO$_2$ coating

  • PDF

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권2호
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF

Multi-scale agglomerates and photocatalytic properties of ZnS nanostructures

  • 만민탄;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.267.2-267.2
    • /
    • 2016
  • Semiconductor photo-catalysis offers the potential for complete removal of toxic chemicals through its effective and broad potential applications. Various new compounds and materials for chemical catalysts were synthesized in the past few decades. As one of the most important II-VI group semiconductors, zinc sulfide (ZnS) with a wide direct band gap of 3.8 eV has been extensively investigated and used as a catalyst in photochemistry, environmental protection and in optoelectronic devices. In this work, the ZnS films and nanostructures have been successfully prepared by wet chemical method. We show that the agglomerates with four successive scales are always observed in the case of the homogeneous precipitation of zinc sulfide. Hydrodynamics plays a crucial role to determine the size of the largest agglomerates; however, other factors should be invoked to interpret the complete structure. In addition, studies of the photocatalytic properties by exposure to UV light irradiation demonstrated that ZnS nanocrystals (NCs) are good photo-catalysts as a result of the rapid generation of electron-hole pairs by photo-excitation and the highly negative reduction potentials of excited electrons. A combination of their unique features of high surface-to volume ratios, carrier dynamics and rich photo-catalytic suggests that these ZnS NCs will find many interesting applications in semiconductor photo-catalysis, solar cells, environmental remediation, and nano-devices.

  • PDF

Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation

  • Bathla, Aadil;Pal, Bonamali
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.486-496
    • /
    • 2018
  • Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous $TiO_2$ leads to several surface modifications. The bimetallic PNT-3 ($Pd_3@Ni_1/mTiO_2$) exhibited large surface area ($212m^2g^{-1}$), and low recombination rate of the charge carriers ($e^--h^+$). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant $k=5.31{\times}10^{-1}h^{-1}$ owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/$mTiO_2$ interface.

상업용 오존촉매와 광촉매를 이용한 오존제거특성 (Characteristics of Residual Ozone Decomposition with Commercial Ozone Decomposition Catalyst (ODC) and Photo catalyst)

  • 변정훈;박재홍;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1255-1260
    • /
    • 2004
  • Decomposition of ozone at room temperature was investigated comparatively with commercial monolithic ozone decomposition catalyst (ODC, $MnO_2$) and monolithic photo catalyst ($TiO_2$). The effects of residence time, UV (ultraviolet) light dependence and ozone concentration on the conversion was presented. UV ray was irradiated using BLB (black light blue) lamp ($315{\sim}400$ nm), supplied with a constant intensity in the reactor. The concentration of ozone in the square-shape reactor can be controlled by combining the DBD (dielectric barrier discharge) reactor with an AC high voltage supply system. The catalytic performance, in presence of UV irradiation did not show significant changes for $MnO_2$ catalyst. $TiO_2$ catalyst was the different case, which showed higher decomposition activity in presence of UV irradiation. Deactivation of catalyst detected by real-time ozone monitor for 120 hours with a constant inlet ozone concentration.

  • PDF