DOI QR코드

DOI QR Code

TiO2-catalytic UV-LED Photo-oxidation of Cyanide Contained in Mine Wastewater

광산폐수 내 시안 제거를 위한 TiO2와 UV-LED를 이용한 광촉매 산화

  • Kim, Seong Hee (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Sang-Woo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Young-Ho (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 김성희 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 이상우 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김영호 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Received : 2014.10.28
  • Accepted : 2014.12.10
  • Published : 2014.12.30

Abstract

Cyanidation method has been used to extract high-purity gold and silver in mining industry. Such mining activities have used a large amount of cyanide, and the mine wastewater contained a high level of cyanide has brought about pollution of surrounding aqueous environments. This research was initiated to study $TiO_2$-catalytic UV-LED photo-oxidation to remove cyanide from the mine wastewater. UV lamp has been generally used as a light source in conventional photo-oxidation so far, but it shows numerous drawbacks. For this reason, this study focused on the evaluation of applicability of UV-LED as an alternative light source in cyanide photo-oxidation process. Three types of $TiO_2$ photo-catalyst were compared in terms of performance of photo-oxidation of cyanide, and the results show that Degussa P25 was the most efficient. In addition, four types of UV-LED were tested to compare their efficiencies of cyanide photo-oxidation, and their efficacy was increased in the order of 365 nm lamp-type > 365 nm can-type > 280 nm can-type > 420 nm lamp-type. Not only did this study demonstrate that UV-LED can be used in the photo-oxidation of cyanide as an alternative light source of UV lamp, but also confirmed that the performance of photo-oxidation was significantly influenced by the type of $TiO_2$ catalysts.

광산에서 순도 높은 금은을 추출하기 위해 청화법을 이용해 왔다. 이러한 광산 활동에서 많은 양의 시안이 사용되어 왔으며 이에 따라 고농도의 시안을 함유한 광산폐수가 발생되어 광산 주변 지역의 수계를 오염시킬 수 있다. 본 연구에서는 이러한 시안함유 광산폐수 및 침출수로부터 시안을 제거하기 위하여 $TiO_2$ 광촉매와 UV-LED 광원을 이용한 광산화 공정에 대하여 연구하였다. 기존 광산화 공정에서는 주로 UV 램프가 광원으로 많이 사용되었지만 여러 가지 단점으로 인하여 본 연구에서는 그 대체 광원으로 UV-LED의 적용 가능성을 평가하였다. 세 종류의 $TiO_2$의 광산화 효율을 평가한 결과, 아나타제와 루틸이 혼합된 Degussa P25가 광산화 효율이 가장 좋은 것으로 확인되었다. 또한 형태와 파장이 다른 네 종류의 UV-LED를 비교 평가한 결과, 365 nm 램프형 > 365 nm 캔형 > 280 nm 캔형 > 420 nm 램프형 순으로 제거효율이 좋은 것으로 나타났다. 본 연구는 UV-LED는 기존의 UV 램프의 단점을 극복할 수 있는 대체광원으로서 광산화 공정에 적용 가능하다는 것을 입증하였으며, 시안의 광산화 효율은 $TiO_2$ 광촉매의 종류에도 영향을 받는다는 것을 확인하였다.

Keywords

References

  1. Chiang, K., Amal, R., and Tran, T. (2002) Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Journal of Advances in Environmental Research, 6, 471-485. https://doi.org/10.1016/S1093-0191(01)00074-0
  2. Chiang, K., Amal, R., and Tran, T. (2003) Photocatalytic oxidation of cyanide : kinetic and mechanistic studies. Journal of Molecular catalysis A : Chemical, 193, 285-297. https://doi.org/10.1016/S1381-1169(02)00512-5
  3. Choi, W. (2003) Studies on $TiO_2$ photocatalytic reactions. Journal of Korean Industrial and Engineering Chemistry, 14, 1011-1022 (Korean with English abstract).
  4. Gerakines, P.A., Moore, M.H., and Hudson, R.L. (2004) Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide. ICARUS, 170, 202-213. https://doi.org/10.1016/j.icarus.2004.02.005
  5. Gonghu, L. and Gray, K.A. (2007) The solid-solid interface: Explaining the high and unique photocatalytic reactivity of $TiO_2$-based nanocomposite materials. Journal of Chemical Physics, 339, 173-187.
  6. Gurley, T.W. (1980) Determination of terephthalic acid at the low parts-per-billion level by reverse phase high performance liquid chromatography. Journal of Chromatographic Science, 18, 39-41. https://doi.org/10.1093/chromsci/18.1.39
  7. Ishibashi, K.I., Fujishima, A., Watanabe, T., and Hashimoto, K. (2000) Detection of active oxidative species in $TiO_2$ photocatalysis using the fluorescence technique. Journal of Analytical Biochemistry, 2, 207-210.
  8. Johnson, C.A., Leinz, R.W. Grimes, D.J., and Rye, R.O. (2002) Photochemical changes in cyanide speciation in drainage from a precious metal ore heap. Environmental Science & Technology, 36, 840-845. https://doi.org/10.1021/es011064s
  9. Johnson, C.A., Leinz, R.W. Grimes, D.J., and Rye, R.O. (2008) Cyanide speciation at four gold leach operations undergoing remediation. Environmental Science & Technology. 42, 1038-1044. https://doi.org/10.1021/es702334n
  10. Jung, M.C. (1999) Investigation of soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea. Economic and Environmental Geology, 32, 73-82 (Korean with English abstract).
  11. Jung, M.C. and Jung, M.Y. (2006) Evaluation and management method of environmental contamination from abandoned metal mines in Korea. Korean Society of Mineral Energy and Resources Engineers, 43, 383-394 (Korean with English abstract).
  12. Jung, Y.H. and Lee, S.K. (2009) Treatment characteristics of plating wastewater containing freecyanide, cyanide complexes and heavy metals (I). Journal of Korean Society on Water Quality, 25, 979-983 (Korean with English abstract).
  13. Kim, M. and Shin, B.S. (1998) Electrolytic treatment of copper cyanide in wastewater from gold mines. Korean Society of Mineral Energy and Resources Engineers, 35, 280-286 (Korean with English abstract).
  14. Kim, S.T., Yoon, Y.H., Park, J.A., and Shim, U.S. (1999) Distribution of heavy metals and cyanide in tailings, soils, and stream sediments around Gubong disused mine. Journal of Korean Soil Environment Society, 4, 35-47 (Korean with English abstract).
  15. Lee, G.D. and Lee, H.I. (1992) Application of photocatalysis. Journal of Korean Industrial and Engineering Chemistry, 3, 35-45 (Korean with English abstract).
  16. Lee, J.S., Lee, K.T., Kim, C.K., Kim, H.J., Lee, C.H., and Lee, J.H. (2007) Toxicity of binary mixture of cyanide and 3,5-dichlorophenol to vibrio fischeri determined by newly developed N-tox(R) bioassay system. Journal of Environmental Toxicology, 22, 27-36 (Korean with English abstract).
  17. Lee, S.W. and Kim, J.S. (2013) Antidotes of cyanide intoxication. Journal of Korean Medical Association, 56, 1076-1083. https://doi.org/10.5124/jkma.2013.56.12.1076
  18. Malhotra, S., Pandit, M., Kapoor, J.C., and Tyagi, D.K. (2005) Photo-oxidation of cyanide in aqueous solution by the UV/$H_2O_2$ process. Journal of Chemical Technology and Biotechnology, 80, 13-19. https://doi.org/10.1002/jctb.1127
  19. Meehan, S.M.E., Weaver, T.R., and Lawrence, C.R. (1999) The biodegradation of cyanide in groundwater at gasworks sites, Austraila: implications for site management. Environmental Management and Health, 10, 64-71. https://doi.org/10.1108/09566169910257112
  20. Parga, J.R., Shukla, S.S., and Carrillo-Pedroza, F.R. (2003) Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol. Journal of Waste Management, 23, 183-191. https://doi.org/10.1016/S0956-053X(02)00064-8
  21. Raybuck, S.A. (1992) Microbes and microbial enzymes for cyanide degradation. Biodegradation, 3, 3-18.
  22. Sohn, D.R., Kim, J.H., Lee, S., and Lee, H.I. (2003) The effect of $H_2O_2$ on the photodegradation of cyanide over $TiO_2$ catalyst. Journal of Korean Industrial Engineering Chemistry, 14, 391-396 (Korean with English abstract).
  23. Wada, H., Yanaga, K., Kuroda, Y., Hanela, S., and Hirayama, Y. (2005) Recycling of wastewater containing iron-complex cyanides using UV photodecomposition and UV ozone oxidation in combination with an ion-exchange resin method. Bulletin of the Chemical Society of Japan, 78, 512-518. https://doi.org/10.1246/bcsj.78.512
  24. Wahaab, R.A., Moawad, A.K., Taleb, E.A., Ibrahim, H.S., and El-Nazer, H.A.H. (2010) Combined photocatalytic oxidation and chemical coagulation for cyanide and heavy metals removal from electroplating wastewater. World Applied Sciences Journal, 8, 462-469.
  25. Watanabe, A., Yano, K., Ikebukuro, K., and Karube, I. (1998) Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology, 144, 1677-82. https://doi.org/10.1099/00221287-144-6-1677
  26. Yeo, S.W., Kim, J.H., and Lee, H.I. (2002) Photocatalytic treatment of cyanide in water. Journal of the Korean Chemical Society, 46, 64-68 (Korean with English abstract). https://doi.org/10.5012/jkcs.2002.46.1.064

Cited by

  1. Photocatalytic Oxidation of Arsenite Using Goethite and UV LED vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.9
  2. 침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화 vol.50, pp.3, 2014, https://doi.org/10.9719/eeg.2017.50.3.215
  3. Adsorption and Photodegradation Efficiency of TiO2/Fe2O3/PAC and TiO2/Fe2O3/Zeolite Nanophotocatalysts for the Removal of Cyanide vol.58, pp.5, 2014, https://doi.org/10.1021/acs.iecr.8b05073