• Title/Summary/Keyword: Phosphorylation of keratin

검색결과 4건 처리시간 0.016초

Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition

  • Kim, Hyun Ji;Choi, Won Jun;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.301-312
    • /
    • 2015
  • Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.

12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2

  • Lee, Eun Ji;Park, Mi Kyung;Kim, Hyun Ji;Kang, June Hee;Kim, You Ri;Kang, Gyeoung Jin;Byun, Hyun Jung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.122-128
    • /
    • 2014
  • The stiffness of cancer cells is attributable to intermediate filaments such as keratin. Perinuclear reorganization via phosphorylation of specific serine residue in keratin is implicated in the deformability of metastatic cancer cells including the human pancreatic carcinoma cell line (PANC-1). 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter and protein kinase C (PKC) activator. However, its effects on phosphorylation and reorganization of keratin 8 (K8) are not well known. Therefore, we examined the underlying mechanism and effect of TPA on K8 phosphorylation and reorganization. TPA induced phosphorylation and reorganization of K8 and transglutaminase-2 (Tgase-2) expression in a time- and dose-dependent manner in PANC-1 cells. These effects peaked after 45 min and 100 nM of TPA treatment. We next investigated, using cystamine (CTM), Tgase inhibitor, and Tgase-2 gene silencing, Tgase-2's possible involvement in TPA-induced K8 phosphorylation and reorganization. We found that Tgase-2 gene silencing inhibited K8 phosphorylation and reorganization in PANC-1 cells. Tgase-2 gene silencing, we additionally discovered, suppressed TPA-induced migration of PANC-1 cells and Tgase-2 overexpression induced migration of PANC-1 cells. Overall, these results suggested that TPA induced K8 phosphorylation and reorganization via Tgase-2 expression in PANC-1 cells.

Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition

  • Byun, Hyun Jung;Kang, Kyung Jin;Park, Mi Kyung;Lee, Hye Ja;Kang, June Hee;Lee, Eun Ji;Kim, You Ri;Kim, Hyun Ji;Kim, Young Woo;Jung, Kyung Chae;Kim, Soo Youl;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.338-342
    • /
    • 2013
  • Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.

Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes

  • Oh, Yunsil;Hwang, Hwan Ju;Yang, Hee;Kim, Jong Hun;Yoon Park, Jung Han;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1379-1386
    • /
    • 2020
  • Acne is a chronic skin disease that typically occurs in the teens and twenties, and its symptoms vary according to age, sex, diet, and lifestyle. The condition is characterized by hyperproliferation of keratinocytes in the epidermis, sebum overproduction, excessive growth of Propionibacterium acnes, and P. acnes-induced skin inflammation. Interleukin (IL)-1α and IL-6 are predominant in the inflammatory lesions of acne vulgaris. These cytokines induce an inflammatory reaction in the skin in the presence of pathogens or stresses. Moreover, IL-1α accelerates the production of keratin 16, which is typically expressed in wounded or aberrant skin, leading to abnormalities in architecture and hyperkeratinization. Orobol (3',4',5,7-tetrahydroxyisoflavone) is a metabolite of genistein that inhibited the P. acnes-induced increases in IL-6 and IL-1α levels in human keratinocytes (HaCaTs) more effectively compared with salicylic acid. In addition, orobol decreased the IL-1α and IL-6 mRNA levels and inhibited the phosphorylation of inhibitor of kappa-B kinase, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, and mitogen-activated protein kinase induced by P. acnes. Finally, the expression of Ki67 was decreased by orobol. Thus, orobol ameliorated the inflammation and hyperkeratinization induced by heat-killed P. acnes and thus has potential for use in functional foods and cosmetics.