Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.032

Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition  

Kim, Hyun Ji (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University)
Choi, Won Jun (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University)
Lee, Chang Hoon (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University)
Publication Information
Biomolecules & Therapeutics / v.23, no.4, 2015 , pp. 301-312 More about this Journal
Abstract
Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.
Keywords
Metastasis; Viscoelasticity; Phosphorylation of keratin; Reorganization of keratin; Epithelial Mesenchymal Transition; Sphingosylphosphorylcholine;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Duan, S., Yao, Z., Zhu, Y., Wang, G., Hou, D., Wen, L. and Wu, M. (2009) The Pirh2-keratin 8/18 interaction modulates the cellular distribution of mitochondria and UV-induced apoptosis. Cell Death Differ. 16, 826-837.   DOI
2 Feng, L., Zhou, X., Liao, J. and Omary, M. B. (1999) Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway. J. Cell Sci. 112, 2081-2090.
3 Fortier, A. M., Riopel, K., Desaulniers, M. and Cadrin, M. (2010a) Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury. Exp. Mol. Pathol. 89, 117-125.   DOI
4 Fortier, A. M., Van Themsche, C., Asselin, E. and Cadrin, M. (2010b) Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett. 584, 984-988.   DOI
5 Friedl, P., Wolf, K. and Lammerding, J. (2011) Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55-64.   DOI
6 Fuchs, E. and Raghavan, S. (2002) Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3, 199-209.   DOI
7 Gerlitz, G. and Bustin, M. (2011) The role of chromatin structure in cell migration. Trends Cell Biol. 21, 6-11.   DOI
8 Getsios, S., Huen, A. C. and Green, K. J. (2004) Working out the strength and flexibility of desmosomes. Nat. Rev. Mol. Cell Biol. 5, 271-281.   DOI
9 Goebeler, M., Roth, J., van den Bos, C., Ader, G. and Sorg, C. (1995) Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem. J. 309, 419-424.   DOI
10 Ridge, K. M., Linz, L., Flitney, F. W., Kuczmarski, E. R., Chou, Y. H., Omary, M. B., Sznajder, J. I. and Goldman, R. D. (2005) Keratin 8 phosphorylation by protein kinase C delta regulates shear stressmediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J. Biol. Chem. 280, 30400-30405.   DOI
11 Rotty, J. D. and Coulombe, P. A. (2012) A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197, 381-389.   DOI
12 Schmidt, A. and Jager, S. (2005) Plakophilins--hard work in the desmosome, recreation in the nucleus? Eur. J. Cell Biol. 84, 189-204.   DOI
13 Scott, G. K., Atsriku, C., Kaminker, P., Held, J., Gibson, B., Baldwin, M. A. and Benz, C. C. (2005) Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation. Mol. Pharmacol. 68, 606-615.
14 Seltmann, K., Roth, W., Kroger, C., Loschke, F., Lederer, M., Huttelmaier, S. and Magin, T. M. (2013) Keratins mediate localization of hemidesmosomes and repress cell motility. J. Invest. Dermatol. 133, 181-190.   DOI
15 Sivaramakrishnan, S., Schneider, J. L., Sitikov, A., Goldman, R. D. and Ridge, K. M. (2009) Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol. Biol. Cell 20, 2755-2765.   DOI
16 Snider, N. T. and Omary, M. B. (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15, 163-177.   DOI
17 Govaere, O., Komuta, M., Berkers, J., Spee, B., Janssen, C., de Luca, F., Katoonizadeh, A., Wouters, J., van Kempen, L. C., Durnez, A., Verslype, C., De Kock, J., Rogiers, V., van Grunsven, L. A., Topal, B., Pirenne, J., Vankelecom, H., Nevens, F., van den Oord, J., Pinzani, M. and Roskams, T. (2014) Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 63, 674-685.   DOI
18 Green, K. J. and Simpson, C. L. (2007) Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127, 2499-2515.   DOI
19 Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H. and Goldman, R. D. (2012) Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One 7, e39065.   DOI
20 Guo, L., Degenstein, L., Dowling, J., Yu, Q. C., Wollmann, R., Perman, B. and Fuchs, E. (1995) Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233-243.   DOI
21 Haines, R. L. and Lane, E. B. (2012) Keratins and disease at a glance. J. Cell Sci. 125, 3923-3928.   DOI
22 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
23 Hatsell, S. and Cowin, P. (2001) Deconstructing desmoplakin. Nat. Cell Biol. 3, E270-272.   DOI
24 Hatzfeld, M. and Weber, K. (1990) The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression. J. Cell Biol. 110, 1199-1210.   DOI
25 Snider, N. T., Park, H. and Omary, M. B. (2013) A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization. J. Biol. Chem. 288, 31329-31337.   DOI
26 Snider, N. T., Weerasinghe, S. V., Iniguez-Lluhi, J. A., Herrmann, H. and Omary, M. B. (2011) Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 286, 2273-2284.   DOI
27 Sonnenberg, A. and Liem, R. K. (2007) Plakins in development and disease. Exp. Cell Res. 313, 2189-2203.   DOI
28 Srikanth, B., Vaidya, M. M. and Kalraiya, R. D. (2010) O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18. J. Biol. Chem. 285, 34062-34071.   DOI
29 Steinert, P. M. (1988) The dynamic phosphorylation of the human intermediate filament keratin 1 chain. J. Biol. Chem. 263, 13333-13339.
30 Stroka, K. M. and Konstantopoulos, K. (2014) Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am. J. Physiol. Cell Physiol. 306, C98-C109.   DOI
31 Sugimoto, M., Inoko, A., Shiromizu, T., Nakayama, M., Zou, P., Yonemura, S., Hayashi, Y., Izawa, I., Sasoh, M., Uji, Y., Kaibuchi, K., Kiyono, T. and Inagaki, M. (2008). The keratin-binding protein Albatross regulates polarization of epithelial cells. J. Cell Biol. 183, 19-28.   DOI
32 Sun, Z., Guo, Y. S., Yan, S. J., Wan, Z. Y., Gao, B., Wang, L., Liu, Z. H., Gao, Y., Samartzis, D., Lan, L. F., Wang, H. Q. and Luo, Z. J. (2013) CK8 phosphorylation induced by compressive loads underlies the downregulation of CK8 in human disc degeneration by activating protein kinase C. Lab. Invest. 93, 1323-1330.   DOI
33 He, T., Stepulak, A., Holmstrom, T. H., Omary, M. B. and Eriksson, J. E. (2002) The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277, 10767-10774.   DOI
34 Herrmann, H. and Aebi, U. (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79-90.   DOI
35 Hiraga, R., Kato, M., Miyagawa, S. and Kamata, T. (2013) Nox4-derived ROS signaling contributes to TGF-beta-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res. 33, 4431-4438.
36 Hu, X., Wu, X., Xu, J., Zhou, J., Han, X. and Guo, J. (2009) Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci. 10, 74.   DOI
37 Kakehashi, A., Inoue, M., Wei, M., Fukushima, S. and Wanibuchi, H. (2009) Cytokeratin 8/18 overexpression and complex formation as an indicator of GST-P positive foci transformation into hepatocellular carcinomas. Toxicol. Appl. Pharmacol. 238, 71-79.   DOI
38 Kalluri, R. and Neilson, E. G. (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776-1784.   DOI
39 Kalluri, R. and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420-1428.   DOI
40 Kang, J. H., Park, M. K., Kim, H. J., Kim, Y. and Lee, C. H. (2011) Isolation of soil microorganisms having antibacterial activity and antimigratory effects on sphingosylphosphorylcholine-induced migration of PANC-1 cells. Toxicol. Res. 27, 241-246.   DOI
41 Suozzi, K. C., Wu, X. and Fuchs, E. (2012) Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197, 465-475.   DOI
42 Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413-438.   DOI
43 Tao, G. Z., Toivola, D. M., Zhou, Q., Strnad, P., Xu, B., Michie, S. A. and Omary, M. B. (2006) Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a siteand cell-specific manner. J. Cell Sci. 119, 1425-1432.   DOI
44 Toivola, D. M., Boor, P., Alam, C. and Strnad, P. (2015) Keratins in health and disease. Curr. Opin. Cell Biol. 32C, 73-81.
45 Toivola, D. M., Goldman, R. D., Garrod, D. R. and Eriksson, J. E. (1997) Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 110, 23-33.
46 Toivola, D. M., Zhou, Q., English, L. S. and Omary, M. B. (2002) Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol. Biol. Cell 13, 1857-1870.   DOI
47 Velasco, G., Gomez del Pulgar, T., Carling, D. and Guzman, M. (1998) Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components. FEBS Lett. 439, 317-320.   DOI
48 Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P. and Zeng, Q. (2007a) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 67, 2922-2926.   DOI
49 Karantza, V. (2011) Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30, 127-138.   DOI
50 Kayser, J., Haslbeck, M., Dempfle, L., Krause, M., Grashoff, C., Buchner, J., Herrmann, H. and Bausch, A. R. (2013) The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys. J. 105, 1778-1785.   DOI
51 Khapare, N., Kundu, S. T., Sehgal, L., Sawant, M., Priya, R., Gosavi, P., Gupta, N., Alam, H., Karkhanis, M., Naik, N., Vaidya, M. M. and Dalal, S. N. (2012) Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PLoS One 7, e38561.   DOI
52 Kim, E. J., Kim, H. J., Park, M. K., Kang, G. J., Byun, H. J., Lee, H. and Lee, C. H. (2015) Cardamonin suppresses TGF-beta1-induced epithelial mesenchymal transition via restoring protein phosphatase 2A expression. Biomol. Ther. 23, 141-148.   DOI
53 Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J. and Stoter, M. (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal. 17, 675-689.   DOI
54 Kolsch, A., Windoffer, R. and Leube, R. E. (2009) Actin-dependent dynamics of keratin filament precursors. Cell Motil. Cytoskeleton 66, 976-985.   DOI
55 Komine, M., Freedberg, I. M. and Blumenberg, M. (1996) Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J. Invest. Dermatol. 107, 569-575.   DOI
56 Wang, L., Srinivasan, S., Theiss, A. L., Merlin, D. and Sitaraman, S. V. (2007b) Interleukin-6 induces keratin expression in intestinal epithelial cells: potential role of keratin-8 in interleukin-6-induced barrier function alterations. J. Biol. Chem. 282, 8219-8227.   DOI
57 Wang, Q., Griffin, H., Southern, S., Jackson, D., Martin, A., McIntosh, P., Davy, C., Masterson, P. J., Walker, P. A., Laskey, P., Omary, M. B. and Doorbar, J. (2004) Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J. Virol. 78, 821-833.   DOI
58 Windoffer, R., Beil, M., Magin, T. M. and Leube, R. E. (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 194, 669-678.   DOI
59 Woll, S., Windoffer, R. and Leube, R. E. (2005) Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur. J. Cell Biol. 84, 311-328.   DOI
60 Woll, S., Windoffer, R. and Leube, R. E. (2007) p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. J. Cell Biol. 177, 795-807.   DOI
61 Yano, T., Tokui, T., Nishi, Y., Nishizawa, K., Shibata, M., Kikuchi, K., Tsuiki, S., Yamauchi, T. and Inagaki, M. (1991) Phosphorylation of keratin intermediate filaments by protein kinase C, by calmodulin-dependent protein kinase and by cAMP-dependent protein kinase. Eur. J. Biochem. 197, 281-290.   DOI
62 Zhao, L., Geng, H., Liang, Z. F., Zhang, Z. Q., Zhang, T., Yu, X. and Zhong, C. Y. (2015) Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Biochem. Biophys. Res. Commun. 459, 643-649.   DOI
63 Koster, J., Geerts, D., Favre, B., Borradori, L. and Sonnenberg, A. (2003) Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J. Cell Sci. 116, 387-399.   DOI
64 Kouklis, P. D., Hutton, E. and Fuchs, E. (1994) Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell Biol. 127, 1049-1060.   DOI
65 Koyanagi, N., Imai, T., Arii, J., Kato, A. and Kawaguchi, Y. (2014) Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol. Immunol. 58, 31-37.   DOI
66 Ku, N. O., Azhar, S. and Omary, M. B. (2002a) Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J. Biol. Chem. 277, 10775-10782.   DOI   ScienceOn
67 Ku, N. O., Liao, J. and Omary, M. B. (1998) Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892-1906.   DOI
68 Ku, N. O., Michie, S., Resurreccion, E. Z., Broome, R. L. and Omary, M. B. (2002b) Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. U.S.A. 99, 4373-4378.   DOI
69 Ku, N. O. and Omary, M. B. (1997) Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272, 7556-7564.   DOI
70 Ku, N. O., Toivola, D. M., Strnad, P. and Omary, M. B. (2010) Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol. 12, 876-885.   DOI
71 Zhou, Q., Cadrin, M., Herrmann, H., Chen, C. H., Chalkley, R. J., Burlingame, A. L. and Omary, M. B. (2006) Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J. Biol. Chem. 281, 16453-16461.   DOI
72 Zhou, Q., Snider, N. T., Liao, J., Li, D. H., Hong, A., Ku, N. O., Cartwright, C. A. and Omary, M. B. (2010) Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 5, e13538.   DOI
73 Zhou, X., Liao, J., Hu, L., Feng, L. and Omary, M. B. (1999) Characterization of the major physiologic phosphorylation site of human keratin 19 and its role in filament organization. J. Biol. Chem. 274, 12861-12866.   DOI
74 Akita, Y., Kawasaki, H., Imajoh-Ohmi, S., Fukuda, H., Ohno, S., Hirano, H., Ono, Y. and Yonekawa, H. (2007) Protein kinase C epsilon phosphorylates keratin 8 at Ser8 and Ser23 in GH4C1 cells stimulated by thyrotropin-releasing hormone. FEBS J. 274, 3270-3285.   DOI
75 Alam, H., Gangadaran, P., Bhate, A. V., Chaukar, D. A., Sawant, S. S., Tiwari, R., Bobade, J., Kannan, S., D'Cruz A, K., Kane, S. and Vaidya, M. M. (2011) Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS One 6, e27767.   DOI
76 Ando, S., Tokui, T., Yano, T. and Inagaki, M. (1996) Keratin 8 phosphorylation in vitro by cAMP-dependent protein kinase occurs within the amino- and carboxyl-terminal end domains. Biochem. Biophys. Res. Commun. 221, 67-71.   DOI
77 Baribault, H., Blouin, R., Bourgon, L. and Marceau, N. (1989) Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis. J. Cell Biol. 109, 1665-1676.   DOI
78 Ku, N. O., Zhou, X., Toivola, D. M. and Omary, M. B. (1999) The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol. 277, G1108-1137.
79 Kuga, T., Kume, H., Kawasaki, N., Sato, M., Adachi, J., Shiromizu, T., Hoshino, I., Nishimori, T., Matsubara, H. and Tomonaga, T. (2013) A novel mechanism of keratin cytoskeleton organization through casein kinase Ialpha and FAM83H in colorectal cancer. J. Cell Sci. 126, 4721-4731.   DOI
80 Lee, E. J., Park, M. K., Kim, H. J., Kang, J. H., Kim, Y. R., Kang, G. J., Byun, H. J. and Lee, C. H. (2014) 12-O-tetradecanoylphorbol-13-acetate induces keratin 8 phosphorylation and reorganization via expression of transglutaminase-2. Biomol. Ther. 22, 122-128.   DOI
81 Lee, J. C., Schickling, O., Stegh, A. H., Oshima, R. G., Dinsdale, D., Cohen, G. M. and Peter, M. E. (2002) DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell Biol. 158, 1051-1066.   DOI
82 Leube, R. E., Moch, M., Kolsch, A. and Windoffer, R. (2011) "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Bioarchitecture 1, 39-44.   DOI
83 Liao, J., Lowthert, L. A. and Omary, M. B. (1995) Heat stress or rotavirus infection of human epithelial cells generates a distinct hyperphosphorylated form of keratin 8. Exp. Cell Res. 219, 348-357.   DOI
84 Liao, J. and Omary, M. B. (1996) 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol. 132, 345-357.   DOI
85 Liovic, M., Mogensen, M. M., Prescott, A. R. and Lane, E. B. (2003) Observation of keratin particles showing fast bidirectional movement colocalized with microtubules. J. Cell Sci. 116, 1417-1427.   DOI
86 Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J. and Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803-811.   DOI   ScienceOn
87 Bhardwaj, A., Singh, S., Srivastava, S. K., Arora, S., Hyde, S. J., Andrews, J., Grizzle, W. E. and Singh, A. P. (2014) Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model. Br. J. Cancer 110, 2000-2010.   DOI
88 Borradori, L. and Sonnenberg, A. (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 112, 411-418.   DOI
89 Burcham, P. C., Raso, A. and Henry, P. J. (2014) Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 319, 44-52.   DOI
90 Busch, T., Armacki, M., Eiseler, T., Joodi, G., Temme, C., Jansen, J., von Wichert, G., Omary, M. B., Spatz, J. and Seufferlein, T. (2012) Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125, 2148-2159.   DOI
91 Byun, H. J., Kang, K. J., Park, M. K., Lee, H. J., Kang, J. H., Lee, E. J., Kim, Y. R., Kim, H. J., Kim, Y. W., Jung, K. C., Kim, S. Y. and Lee, C. H. (2013) Ethacrynic acid inhibits sphingosylphosphorylcholineinduced keratin 8 phosphorylation and reorganization via transglutaminase- 2 inhibition. Biomol. Ther. 21, 338-342.   DOI
92 Loschke, F., Seltmann, K., Bouameur, J. E. and Magin, T. M. (2015) Regulation of keratin network organization. Curr. Opin. Cell Biol. 32C, 56-64.
93 Lv, Q., Hua, F. and Hu, Z. W. (2012) DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8, 1675-1676.   DOI
94 Ma, Q., Guin, S., Padhye, S. S., Zhou, Y. Q., Zhang, R. W. and Wang, M. H. (2011) Ribosomal protein S6 kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Mol. Cancer 10, 66.   DOI
95 Mellad, J. A., Warren, D. T. and Shanahan, C. M. (2011) Nesprins LINC the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23, 47-54.   DOI
96 Menon, M. B., Schwermann, J., Singh, A. K., Franz-Wachtel, M., Pabst, O., Seidler, U., Omary, M. B., Kotlyarov, A. and Gaestel, M. (2010) p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J. Biol. Chem. 285, 33242-33251.   DOI
97 Mizuuchi, E., Semba, S., Kodama, Y. and Yokozaki, H. (2009) Downmodulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int. J. Cancer 124, 1802-1810.   DOI
98 Moll, R., Franke, W. W., Schiller, D. L., Geiger, B. and Krepler, R. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11-24.   DOI
99 Murata, T., Goshima, F., Nishizawa, Y., Daikoku, T., Takakuwa, H., Ohtsuka, K., Yoshikawa, T. and Nishiyama, Y. (2002) Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Microbiol. Immunol. 46, 707-719.   DOI
100 Cadrin, M., McFarlane-Anderson, N., Aasheim, L. H., Kawahara, H., Franks, D. J., Marceau, N. and French, S. W. (1992) Differential phosphorylation of CK8 and CK18 by 12-O-tetradecanoyl-phorbol-13-acetate in primary cultures of mouse hepatocytes. Cell. Signal. 4, 715-722.   DOI
101 Chang, T. H., Huang, H. D., Ong, W. K., Fu, Y. J., Lee, O. K., Chien, S. and Ho, J. H. (2014) The effects of actin cytoskeleton perturbation on keratin intermediate filament formation in mesenchymal stem/stromal cells. Biomaterials 35, 3934-3944.   DOI
102 Chen, Y. L., Lin, S. Z., Chang, W. L., Cheng, Y. L. and Harn, H. J. (2005) Requirement for ERK activation in acetone extract identified from Bupleurum scorzonerifolium induced A549 tumor cell apoptosis and keratin 8 phosphorylation. Life Sci. 76, 2409-2420.   DOI
103 Chou, C. C., Lee, K. H., Lai, I. L., Wang, D., Mo, X., Kulp, S. K., Shapiro, C. L. and Chen, C. S. (2014) AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 74, 4783-4795.   DOI
104 Coulombe, P. A. and Omary, M. B. (2002) 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110-122.   DOI
105 Coussens, L. M., Fingleton, B. and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392.   DOI
106 Cross, S. E., Jin, Y. S., Rao, J. and Gimzewski, J. K. (2007) Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780-783.   DOI   ScienceOn
107 Neumann, S. and Noegel, A. A. (2014) Nesprins in cell stability and migration. Adv. Exp. Med. Biol. 773, 491-504.   DOI
108 Omary, M. B., Ku, N. O., Liao, J. and Price, D. (1998) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105-140.
109 Omary, M. B., Ku, N. O., Strnad, P. and Hanada, S. (2009) Toward unraveling the complexity of simple epithelial keratins in human disease. J. Clin. Invest. 119, 1794-1805.   DOI
110 Omary, M. B., Ku, N. O., Tao, G. Z., Toivola, D. M. and Liao, J. (2006) "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31, 383-394.   DOI
111 Omary, M. B., Ku, N. O. and Toivola, D. M. (2002) Keratins: guardians of the liver. Hepatology 35, 251-257.   DOI
112 Oshima, R. G. (1982) Developmental expression of murine extraembryonic endodermal cytoskeletal proteins. J. Biol. Chem. 257, 3414-3421.
113 Padmakumar, V. C., Libotte, T., Lu, W., Zaim, H., Abraham, S., Noegel, A. A., Gotzmann, J., Foisner, R. and Karakesisoglou, I. (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 118, 3419-3430.   DOI
114 Pan, X., Hobbs, R. P. and Coulombe, P. A. (2013) The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr. Opin. Cell Biol. 25, 47-56.   DOI
115 Pan, X., Kane, L. A., Van Eyk, J. E. and Coulombe, P. A. (2011) Type I keratin 17 protein is phosphorylated on serine 44 by p90 ribosomal protein S6 kinase 1 (RSK1) in a growth- and stress-dependent fashion. J. Biol. Chem. 286, 42403-42413.   DOI
116 Paramio, J. M., Segrelles, C., Ruiz, S. and Jorcano, J. L. (2001) Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol. Cell. Biol. 21, 7449-7459.   DOI
117 Park, M. K., Lee, H. J., Shin, J., Noh, M., Kim, S. Y. and Lee, C. H. (2011) Novel participation of transglutaminase-2 through c-Jun Nterminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells. Biochim. Biophys. Acta 1811, 1021-1029.   DOI
118 Park, M. K., Park, Y., Shim, J., Lee, H. J., Kim, S. and Lee, C. H. (2012) Novel involvement of leukotriene B(4) receptor 2 through ERK activation by PP2A down-regulation in leukotriene B(4)-induced keratin phosphorylation and reorganization of pancreatic cancer cells. Biochim. Biophys. Acta 1823, 2120-2129.   DOI   ScienceOn
119 Park, M. K., You, H. J., Lee, H. J., Kang, J. H., Oh, S. H., Kim, S. Y. and Lee, C. H. (2013) Transglutaminase-2 induces N-cadherin expression in TGF-beta1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation. Eur. J. Cancer 49, 1692-1705.   DOI   ScienceOn
120 Pavlaki, M. and Zucker, S. (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev. 22, 177-203.   DOI
121 Perng, M. D., Cairns, L., van den, I. P., Prescott, A., Hutcheson, A. M. and Quinlan, R. A. (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J. Cell Sci. 112 (Pt 13), 2099-2112.
122 Rajgor, D., Mellad, J. A., Soong, D., Rattner, J. B., Fritzler, M. J. and Shanahan, C. M. (2014) Mammalian microtubule P-body dynamics are mediated by nesprin-1. J. Cell Biol. 205, 457-475.   DOI