• Title/Summary/Keyword: Phosphoinositide

Search Result 158, Processing Time 0.017 seconds

The Relationship between Change of Lymphocyte Inositol Monophosphatase mRNA Level by Lithium and Clinical Course in Bipolar Affective Disorder (Lithium에 의한 양극성 기분장애환자의 임파구 Inositol Monophosphatase mRNA 양의 변화와 임상경과)

  • Kim, Seok Hyeon;Lee, Min Soo;Lee, Jang Han
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.96-105
    • /
    • 2001
  • Objective : Lithium inhibits the action of inositol monophosphatase(IMPase) in phosphoinositide(PI) signal transduction system at therapeutically relevant concentration. The depletion of inositol by lithium itself cannot explain the lithium's therapeutic effect. However, attention has focused on the abnormality of PI signal transduction system as the pathophysiology of bipolar affective disorder(BPD). We investigated whether IMPase mRNA levels of lymphocytes would be different between BPD patients(n=16) and age, sex-matched normal controls(n=16). We also investigated the change of IMPase mRNA level by lithium during 4 weeks to probe the possibility that IMPase mRNA levels could predict the therapeutic response to lithium and clinical course. Method : Relative IMPase mRNA levels in lymphocyte were quantified by reverse transcriptase(RT)-PCR in sixteen drug-free BPD patients and sex, age-matched normal controls. The psychopathology of patients were measured using YMRS (Young Mania Rating Scale) and CGI(Clinical Global Impression). Results : There was no significant difference in IMPase mRNA levels between BPD patients and normal controls. And the IMPase mRNA levels were not significantly changed by 4 week treatment with lithium. However, the basal IMPase mRNA levels were negatively correlated with the changes of CGI after 4 weeks. Furthermore, the patients with relatively high basal IMPase mRNA levels showed much more improvement during 4 weeks. Conclusions : BPD patients and normal controls were not distinguished by lymphocyte IMPase mRNA level. Although we do not support the hypothesis that lymphocyte IMPase activity would be related with the pathogenesis of BPD and the action of lithium, these data raise the possibility that lymphocyte IMPase mRNA levels could function as a predictor of therapeutic response and clinical course of BPD.

  • PDF

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.

Expression and Purification of the Phosphatase-like Domain of a Voltage-Sensing Phosphatase, Ci-VSP (막 전위 감지 탈인산화 효소, Ci-VSP의 유사 탈인산화 효소 도메인의 발현과 정제)

  • Kim, Sung-Jae;Kim, Hae-Min;Choi, Hoon;Kim, Young-Jun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.1032-1038
    • /
    • 2011
  • Recently identified Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) consists of an ion channel-like transmembrane domain (VSD) and a phosphatase-like domain. Ci-VSP senses the change of membrane potential by its VSD and works as a phosphoinositide phosphatase by its phosphatase domain. In this study, we present the construction of His-tagged phosphatase-like domain of Ci-VSP, its recombinant expression and purification, and its enzymatic activity behavior in order to examine the biochemical behavior of phosphatase domain of Ci-VSP without interference. We found that Ci-VSP(248-576)-His can be eluted with an elution buffer containing 25 mM NaCl and 100 mM imidazole during His-tag purification. In addition, we found the proper measurement condition for kinetics study of Ci-VSP(248-576)-His against p-nitrophenyl phosphate (pNPP). We measured the kinetic constant of Ci-VSP(248-576)-His at $37^{\circ}C$, pH 5.0 or 5.5, under 30 min of reaction time, and less than $2.0\;{\mu}g$ of protein amount. With these conditions, we acquired that Ci-VSP(248-576)-His has $K_m$ of $354{\pm}0.143\;{\mu}M$, $V_{max}$ of $0.0607{\pm}0.0137\;{\mu}mol$/min/mg and $k_{cat}$ of $0.359{\pm}0.009751\;min^{-1}$ for pNPP dephosphorylation. Therefore, we produced a pure form of Ci-VSP(248-576)-His, and this showed a higher activity against pNPP. This purified protein will provide the road to a structural investigation on an interesting protein, Ci-VSP.

Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells (AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과)

  • Lim, Eun Gyeong;Kim, Eun Ji;Kim, Bo Min;Kim, Sang-Yong;Ha, Sung Ho;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Cnidium monnieri (L.) Cusson is distributed in China and Korea, and the fruit of C. monnieri is used as traditional Chinese medicine to treat carbuncle and pain in female genitalia. In this study, we examined the anti-proliferation and cell cycle arrest effects of ethanol extracts from C. monnieri (CME) in AGS gastric cancer cells. Our results show that CME suppressed cell proliferation and induced release of lactate dehydrogenase (LDH) in AGS cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and LDH assay. Cell morphology was altered by CME in a dose-dependent manner. In order to identify the cell cycle arrest effects of CME, we investigated cell cycle analysis after CME treatment. In our results, CME induced cell cycle arrest at G1 phase. Protein kinase B (Akt) plays a major role in cell survival mechanisms such as growth, division, and metastasis. Akt protein regulates various downstream proteins such as glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and tumor protein p53 (p53). Expression levels of p-Akt, p-GSK-$3{\beta}$, p53, p21, cyclin E, and cyclin-dependent kinase 2 (CDK2) were determined by Western blot analysis. Protein levels of p-Akt, p-GSK-$3{\beta}$, and cyclin E were reduced while those of p53, p21, and p-CDK2 (T14/Y15) were elevated by CME. Moreover, treatment with CME, LY294002 (phosphoinositide 3-kinase/Akt inhibitor), BIO (GSK-$3{\beta}$ inhibitor), and Pifithrin-${\alpha}$ (p53 inhibitor) showed that cell cycle arrest effects were mediated through regulation of the Akt/GSK-$3{\beta}$/p53 signaling pathway. These results suggest that CME induces cell cycle arrest at G1 phase via the Akt/GSK-$3{\beta}$/p53 signaling pathway in AGS gastric cancer cells.

Phospholipase C-γ Activation by Direct Interaction with β-Tubulin Isotypes (베타 튜불린에 의한 포스포리파제 C-감마1의 활성화)

  • Lee, In-Bum;Kim, Sung-Kuk;Choi, Jang-Hyun;Suh, Pann-Ghill;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.612-617
    • /
    • 2006
  • Phosphoinositide-specific phospholipase $C-{\gamma}\;1\; (PLC-{\gamma}\;1)$ has pivotal roles in cellular signaling by producing second messengers, inositol 1,4,5-trisphosphate $(IP_3)$ and diacylglycerol (DG). Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of ${\alpha}-$ and ${\beta}-tubulin$ heterodimers in all eukaryotic cells. In humans, six ${\beta}-tubulin$ isotypes have been identified which display a distinct pattern of tissue expression. Previously we found that $PLC-{\gamma}\;1$ and one of four ${\beta}-tubulin$ isotypes including ${\beta}1$, ${\beta}2$, ${\beta}3$ and ${\beta}6$, colocalized in COS-7 cells and cotranslocated to the plasma membrane to activate $PLC-{\gamma}\;1$ upon agonist stimulation. In the present study, we demonstrate that the remaining two, tubulin ${\beta}4$ and ${\beta}5$, also showed a potential to activate $PLC-{\gamma}\;1$. The phosphatidylinositol 4,5-bisphosphate $(PIP_2)$ hydrolyzing activity of $PLC-{\gamma}\;1$ was substantially increased in the presence of purified ${\beta}4$ and ${\beta}5$ tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that tubulin ${\beta}4$ and ${\beta}5$ also activate $PLC-{\gamma}\;1$. Taken together, our results suggest that all the ${\beta}-tubulin$ isotype activates $PLC-{\gamma}\;1$ activity to regulate cellular signaling.

Analysis of the Effects of Overexpression of Specific Phospholipid Binding Proteins on Cellular Morphological Changes in HEK293T Cells (특정 인지질 결합 단백질의 과발현이 HEK293 세포모양에 미치는 영향 분석)

  • Jun, Yong-Woo;Lee, Jin-A;Jang, Deok-Jin
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.875-880
    • /
    • 2016
  • The plasma membrane plays a crucial role in relaying signals from the outside environment to the inside of the cells. In eukaryotic cells, the inner leaflets of the plasma membrane are composed mostly of phospholipids, including phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositides (PIs). In this study, we tried to analyze the morphological changes induced by EGFP-fused membrane binding proteins, which are targeted to the plasma membrane via specific phospholipids binding. As a result, we found that overexpression of EGFP-P4M-SidM, a specific PI4P binding protein, or EGFP alone, did not induce any morphological changes. On the other hand, overexpression of EGFP-PLCδ1(PH), which is a specific PI(4,5)P2 binding protein, EGFP-AKT1(PH) which binds to PI(3,4,5)P3, or EGFP-OSH2(PH)×2 which binds to PI4P and PI(4,5)P2, could induce the filopodia and lamilapodia formation as well as cell shrinkage. Overexpression of Lact-C2-EGFP which is a specific PS-binding probe, EGFP fused Aplysia phosphodiesterase 4 (ApPDE4) long-form (L(N20)-EGFP) which is localized to the plasma membrane via hydrophobic interaction, or EGFP fused Aplysia PDE4 short-form (S(N-UCR1-2)-EGFP) which is localized to the plasma membrane via electrostatic interaction, could induce cell shrinkage, but not filopodia or lamilapodia formation. Taken together, our data support that the different phospholipid bindings in the plasma membrane could induce different characteristic morphological changes. Thus, we can analyze, characterize, and classify the cellular morphological changes induced by the various phospholipid binding proteins.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Lysophosphatidic Acid Stimulates SKOV-3 Cell Migration through the Generation of Reactive Oxygen Species via the mTORC2/Akt1/NOX Signaling Axis (리소포스타티드산은 SKOV-3 난소암세포의 mTORC2/Akt1/NOX 신호전달 기전을 통해 활성산소를 형성하고 이를 통해 세포의 이동을 촉진)

  • Eun Kyoung Kim;Seo Yeon Jin;Jung Min Ha;Sun Sik Bae
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.129-137
    • /
    • 2023
  • Reactive oxygen species (ROS) play an essential role in a variety of cellular physiological phenomena. The present study assessed the signaling axis that mediates the lysophosphatidic acid (LPA)-induced migration of SKOV-3 cells. Insulin-like growth factor-1 (IGF-1) stimulated SKOV-3 cell migration in a time- and dose-dependent manner. Similarly, LPA stimulated SKOV-3 cell migration and the phosphorylation of Akt in a time- and dose-dependent manner. The pharmacological inhibition of LPA receptors (LPA1/LPA3) significantly suppressed LPA-induced SKOV-3 cell migration. However, IGF-1-induced SKOV-3 cell migration was not affected by the inhibition of LPA1 and LPA3. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) or Rho-associated kinase (ROCK) significantly suppressed LPA-induced migration, whereas the inhibition of MAPK kinase (MEK) had no effect. Inhibition of PI3K or ROCK completely suppressed LPA-induced ROS generation, and suppression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) or chelation of ROS by N-acetylcysteine (NAC) blocked LPA-induced SKOV-3 cell migration. LPA-induced ROS generation was suppressed by silencing Rictor or Akt1 but not Raptor or Akt2. Silencing Rictor or Akt1 significantly suppressed LPA-induced SKOV-3 cell migration, whereas silencing Raptor or Akt2 had no effect. Finally, the overexpression of the constitutively active form Akt1 (CA-Akt1) significantly enhanced the LPA-induced migration of SKOV-3 cells. Given these results, we suggest that LPA stimulates SKOV-3 cell migration by ROS generation, which is mediated by the mTORC2/Akt1/NOX signaling axis.