Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.7.1032

Expression and Purification of the Phosphatase-like Domain of a Voltage-Sensing Phosphatase, Ci-VSP  

Kim, Sung-Jae (Department of Applied Biochemistry, Konkuk University)
Kim, Hae-Min (Department of Applied Biochemistry, Konkuk University)
Choi, Hoon (Department of Applied Biochemistry, Konkuk University)
Kim, Young-Jun (Department of Applied Biochemistry, Konkuk University)
Publication Information
Journal of Life Science / v.21, no.7, 2011 , pp. 1032-1038 More about this Journal
Abstract
Recently identified Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) consists of an ion channel-like transmembrane domain (VSD) and a phosphatase-like domain. Ci-VSP senses the change of membrane potential by its VSD and works as a phosphoinositide phosphatase by its phosphatase domain. In this study, we present the construction of His-tagged phosphatase-like domain of Ci-VSP, its recombinant expression and purification, and its enzymatic activity behavior in order to examine the biochemical behavior of phosphatase domain of Ci-VSP without interference. We found that Ci-VSP(248-576)-His can be eluted with an elution buffer containing 25 mM NaCl and 100 mM imidazole during His-tag purification. In addition, we found the proper measurement condition for kinetics study of Ci-VSP(248-576)-His against p-nitrophenyl phosphate (pNPP). We measured the kinetic constant of Ci-VSP(248-576)-His at $37^{\circ}C$, pH 5.0 or 5.5, under 30 min of reaction time, and less than $2.0\;{\mu}g$ of protein amount. With these conditions, we acquired that Ci-VSP(248-576)-His has $K_m$ of $354{\pm}0.143\;{\mu}M$, $V_{max}$ of $0.0607{\pm}0.0137\;{\mu}mol$/min/mg and $k_{cat}$ of $0.359{\pm}0.009751\;min^{-1}$ for pNPP dephosphorylation. Therefore, we produced a pure form of Ci-VSP(248-576)-His, and this showed a higher activity against pNPP. This purified protein will provide the road to a structural investigation on an interesting protein, Ci-VSP.
Keywords
Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP); phosphatidyl inositol phosphate; lipid phosphatase; $K_m$; $V_{max}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Murata, Y., H. Iwasaki, M. Sasaki, K. Inaba, and Y. Okamura. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239-1243.   DOI   ScienceOn
2 Mutoh, H., A. Perron, D. Dimitrov, Y. Iwamoto, W. Akemann, D. M. Chudakov, and T. Knöpfel. 2009. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 4, 4555.   DOI
3 Ogasawara, M., M. Sasaki, N. Nakazawa, A. Nishino, and Y. Okamura. 2011. Gene expression profile of Ci-VSP in juveniles and adult blood cells of ascidian. Gene Expr. Patterns 11, 233-238.   DOI
4 Ramsey, I. S., M. M. Moran, J. A. Chong, and D. E. Clapham. 2006. A voltage-gated proton-selective channel lacking the pore domain. Nature. 440, 1213-1216.   DOI
5 Sakata, S., M. I. Hossain, and Y. Okamura. 2011. Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity. J. Physiol. Apr. 4 [Epub ahead of print].
6 Sasaki, M., M. Takagi, and Y. Okamura. 2006. A voltage sensor domain protein is a voltage-gated proton channel. Science 312, 589-592.   DOI   ScienceOn
7 Tapparel, C., A. Reymond, C. Girardet, L. Guillou, R. Lyle, C. Lamon, P. Hutter, and S. E. Antonarakis. 2003. The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323, 189-199.   DOI   ScienceOn
8 Villalba-Galea, C. A., F. Miceli, M. Taglialatela, and F. Bezanilla 2009. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. J. Gen. Physiol. 134, 5-14.   DOI
9 Villalba-Galea, C. A., W. Sandtner, D. Dimitrov, H. Mutoh, T. Knopfel, and F. Bezanilla. 2009. Charge movement of a voltage-sensitive fluorescent protein. Biophys. J. 96, 19-21.
10 Hossain, M. I., H. Iwasaki, Y. Okochi, M. Chahine, S. Higashijima, K. Nagayama, and Y. Okamura. 2008. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases. J. Biol. Chem. 283, 18248-18259.   DOI   ScienceOn
11 Iwasaki, H., Y. Murata, Y. Kim, M. I. Hossain, C. A. Worby, J. E. Dixon, T. McCormack, T. Sasaki, and Y. Okamura. 2008. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 105, 7970-7975.   DOI
12 Kohout, S. C., M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff. 2008. Subunit organization and functional transitions in Ci-VSP. Nat. Struct. Mol. Biol. 15, 106-108.   DOI
13 Kohout, S. C., S. C. Bell, L. Liu, Q. Xu, D. L. Jr Minor, and E. Y. Isacoff. 2010. Electrochemical coupling in the voltage- dependent phosphatase Ci-VSP. Nat. Chem. Biol. 6, 369-375.   DOI   ScienceOn
14 Lundby, A, H. Mutoh, D. Dimitrov, W. Akemann, and T. Knöpfel. 2008. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3, 2514.   DOI
15 Murata, Y. and Y. Okamura. 2007. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J. Physiol. 583, 875-889.   DOI   ScienceOn
16 Lundby, A, W. Akemann, and T. Knopfel. 2010. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625-1635.   DOI
17 Maehama, T., G. S. Taylor, and J. E. Dixon. PTEN and myotubularin: novel phosphoinositide phosphatases. 2001. Annu. Rev. Biochem. 70, 247-279.   DOI
18 Mourey, R. J. and J. E. Dixon. 1994. Protein tyrosine phosphatases: characterization of extracellular and intracellular domains. Curr. Opin. Genet. Dev. 4, 31-39.   DOI
19 Alabi, A. A., M. I. Bahamonde, H. J. Jung, J. I. Kim, and K. J. Swartz. 2007. Portability of paddle motif function and pharmacology in voltage sensors. Nature 450, 370-375.   DOI
20 Alonso, A., J. Sasin, N. Bottini, I. Friedberg, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, and T. Mustelin. 2004. Protein tyrosine phosphatases in the human genome. Cell 117, 699-711.   DOI
21 Hessa, T., S. H. White, and G. von Heijne. 2005. Membrane insertion of a potassium-channel voltage sensor. Science 307, 1427.   DOI
22 Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI   ScienceOn
23 Chen, H., C. Rossier, M. A. Morris, H. S. Scott, A. Gos, A. Bairoch, and S. E. Antonarakis. 1999. A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. Hum. Genet. 105, 399-409.   DOI
24 Halaszovich, C. R., D. N. Schreiber, and D. Oliver. 2009. Ci-VSP is a depolarization-activated phosphatidylinositol- 4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5'-phosphatase. J. Biol. Chem. 284, 2106-21013.   DOI
25 Horn, R. 2005. Electrifying phosphatases. Sci. STKE 2005, pe50.
26 Zhang, Y., Y. Kim, N. Genoud, J. Gao, J. W. Kelly, S. L. Pfaff, G. N. Gill, J. E. Dixon, and J. P. Noel. 2006. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell. 24, 759-770.   DOI   ScienceOn
27 Villalba-Galea, C. A., W. Sandtner, D. M. Starace, and F. Bezanilla. 2008. S4-based voltage sensors have three major conformations. Proc. Natl. Acad. Sci. USA 105, 17600-17607.   DOI
28 Walker, S. M., C. P. Downes, and N. R. Leslie. 2001. TPIP: a novel phosphoinositide 3-phosphatase. Biochem. J. 360, 277-283.   DOI
29 Worby, C. A. and J. E. Dixon. 2005. Phosphoinositide phosphatases: emerging roles as voltage sensors? Mol. Interv. 5, 274-277.   DOI