Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.8.875

Analysis of the Effects of Overexpression of Specific Phospholipid Binding Proteins on Cellular Morphological Changes in HEK293T Cells  

Jun, Yong-Woo (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University)
Lee, Jin-A (Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University)
Jang, Deok-Jin (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.8, 2016 , pp. 875-880 More about this Journal
Abstract
The plasma membrane plays a crucial role in relaying signals from the outside environment to the inside of the cells. In eukaryotic cells, the inner leaflets of the plasma membrane are composed mostly of phospholipids, including phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositides (PIs). In this study, we tried to analyze the morphological changes induced by EGFP-fused membrane binding proteins, which are targeted to the plasma membrane via specific phospholipids binding. As a result, we found that overexpression of EGFP-P4M-SidM, a specific PI4P binding protein, or EGFP alone, did not induce any morphological changes. On the other hand, overexpression of EGFP-PLCδ1(PH), which is a specific PI(4,5)P2 binding protein, EGFP-AKT1(PH) which binds to PI(3,4,5)P3, or EGFP-OSH2(PH)×2 which binds to PI4P and PI(4,5)P2, could induce the filopodia and lamilapodia formation as well as cell shrinkage. Overexpression of Lact-C2-EGFP which is a specific PS-binding probe, EGFP fused Aplysia phosphodiesterase 4 (ApPDE4) long-form (L(N20)-EGFP) which is localized to the plasma membrane via hydrophobic interaction, or EGFP fused Aplysia PDE4 short-form (S(N-UCR1-2)-EGFP) which is localized to the plasma membrane via electrostatic interaction, could induce cell shrinkage, but not filopodia or lamilapodia formation. Taken together, our data support that the different phospholipid bindings in the plasma membrane could induce different characteristic morphological changes. Thus, we can analyze, characterize, and classify the cellular morphological changes induced by the various phospholipid binding proteins.
Keywords
Cellular morphology; HEK293; Phosphoinositide; Phospholipid; Plasma membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rajput, C., Kini, V., Smith, M., Yazbeck, P., Chavez, A., Schmidt, T., Zhang, W., Knezevic, N., Komarova, Y. and Mehta, D. 2013. Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions. J. Biol. Chem. 288, 4241-4250.   DOI
2 Roy, A. and Levine, T. P. 2004. Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J. Biol. Chem. 279, 44683-44689.   DOI
3 Yeung, T., Gilbert, G. E., Shi, J., Silvius, J., Kapus, A. and Grinstein, S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210-213.   DOI
4 Balla, A., Kim, Y. J., Varnai, P., Szentpetery, Z., Knight, Z., Shokat, K. M. and Balla, T. 2008. Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell. 19, 711-721.
5 Brown, R. E. 1998. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1-9.
6 Di Paolo, G. and De Camilli, P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651-657.   DOI
7 Dickson, E. J., Jensen, J. B. and Hille, B. 2014. Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current. Proc. Natl. Acad. Sci. USA 111, E2281-2290.   DOI
8 Franke, T. F., Kaplan, D. R., Cantley, L. C. and Toker, A. 1997. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665-668.   DOI
9 Hammond, G. R., Fischer, M. J., Anderson, K. E., Holdich, J., Koteci, A., Balla, T. and Irvine, R. F. 2012. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337, 727-730.   DOI
10 Hammond, G. R., Machner, M. P. and Balla, T. 2014. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205, 113-126.   DOI
11 Hilpela, P., Vartiainen, M. K. and Lappalainen, P. 2004. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI (3,4,5)P3. Curr. Top. Microbiol. Immunol. 282, 117-163.
12 Jang, D. J., Park, S. W., Lee, J. A., Lee, C., Chae, Y. S., Park, H., Kim, M. J., Choi, S. L., Lee, N., Kim, H. and Kaang, B. K. 2010. N termini of apPDE4 isoforms are responsible for targeting the isoforms to different cellular membranes. Learn Mem. 17, 469-479.   DOI
13 Kim, K. H., Jun, Y. W., Lee, J. A. and Jang, D. J. 2013. Identification of N-terminal amino acids of ApPDE4 involved in targeting to plasma membrane and cellular morphological change by expression of N-terminal peptide. J. Anal. Sci. Technol. 26, 106-112.   DOI
14 Kim, K. H., Jun, Y. W., Park, Y., Lee, J. A., Suh, B. C., Lim, C. S., Lee, Y. S., Kaang, B. K. and Jang, D. J. 2014. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms. J. Biol. Chem. 289, 25797-25811.   DOI
15 Lee, S. H., Shim, J., Choi, S. L., Lee, N., Lee, C. H., Bailey, C. H., Kandel, E. R., Jang, D. J. and Kaang, B. K. 2012. Learning-related synaptic growth mediated by internalization of Aplysia cell adhesion molecule is controlled by membrane phosphatidylinositol 4,5-bisphosphate synthetic pathway. J. Neurosci. 32, 16296-16305.   DOI
16 Logan, M. R. and Mandato, C. A. 2006. Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol. Cell. 98, 377-388.   DOI
17 McLaughlin, S. and Murray, D. 2005. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605-611.   DOI