• Title/Summary/Keyword: Phospho-Erk1/2

검색결과 50건 처리시간 0.027초

Anti-Inflammatory Effects of Bee Venom on Phthalic Anhydride-Induced Atopic Dermatitis

  • Oh, Myung Jin;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제37권1호
    • /
    • pp.42-48
    • /
    • 2020
  • Background: Atopic dermatitis (AD) is a chronic inflammatory condition which can be studied using phthalic anhydride (PA) to induce AD. Anti-inflammatory properties of bee venom (BV) wereinvestigated to determine whether it may be a useful treatment for AD. Methods: AD was induced by applying to pical PA to 8-week-old HR-1 mice (N = 50), then treating with (0.1, 0.25, and 0.5 ㎍) or without topical BV. Body weight, ear thickness histology, enzyme-linked immune sorbent assay (serum IgE concentrations), Western blot analysis [inducible nitric oxide synthase, cyclooxygenase-2, IκB-α, phospho-IκB-α, c-Jun N-terminal kinase (JNK), phospho-JNK, p38, phospho-p38, extra cellular signal-regulated kinase (ERK), and phospho-ERK], and the pull down assay for immunoblotting (p50), were used to measure inflammatory mediators. Results: PA + BV (0.1, 0.25, and 0.5 ㎍) significantly decreased ear thickness without altering body weight. IgE concentrations decreased in the PA + BV (0.5 ㎍)-treated groups compared with PAtreatment. Tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, cyclooxygenase-2, phospho-IκB-α, phospho-JNK, p38, phospho-p38, and phospho-ERK, all decreased following treatment with PA + BV compared with the PA-treatment alone. p50 was upregulated in the PA + BV-treated groups compared with the PA-treated group. Furthermore, the number of mast cells decreased in the PA + BV-treated groups compared with the PA-treated group. Epidermal thickness was significantly lower in the PA + BV-treated group compared with PA treatment alone. Conclusion: BV maybe a useful anti-inflammatory treatment for AD.

간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향 (Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity)

  • 이기수;홍권의
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

Effect of Kaempferol on Modulation of Vascular Contractility Mainly through PKC and CPI-17 Inactivation

  • Hyuk-Jun Yoon;Heui Woong Moon;Young Sil Min;Fanxue Jin;Joon Seok Bang;Uy Dong Sohn;Hyun Dong Je
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.361-367
    • /
    • 2024
  • In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

Clitocybin A의 모유두 세포증식 효능 (Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells)

  • 강정일;김민경;유은숙;유익동;강희경
    • 생약학회지
    • /
    • 제45권4호
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • 동의생리병리학회지
    • /
    • 제20권5호
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

흰쥐의 좌골신경축삭 압좌 손상 후 시호(柴胡) 추출물에 의한 재생반응성 개선효과 (Effects of Bupleuri radix Extract on Axon Regrowth in the Injured Sciatic Nerve of Rats)

  • 강준혁;오민석
    • 대한한의학회지
    • /
    • 제31권1호
    • /
    • pp.93-111
    • /
    • 2010
  • Objectives: The present study was performed to evaluate the potential effects of Bupleuri radix (SH) on regenerative activities in the peripheral sciatic nerve after crushing injury in rats. Methods: Axonal regeneration after crush injury in rats was analyzed by immunofluorescence staining using anti-NF-200 antibody and retrograde tracing of DiI-axons. Changes in protein levels in the sciatic nerve axons and DRG tissue were analyzed by Western blot analysis and immunofluorescence staining. Effects of SH extract treatment on neurite outgrowth was examined by immunofluorescence staining for cultured DRG neurons. Results: Major findings on the effects of SH extract treatment on axonal regeneration are summarized as follows. 1. SH-mediated enhancement in axonal regeneration was identified by immuno- fluorescence straining of NF-200 protein and retrograde tracing of DiI-labeled axons. 2. Axonal GAP-43 protein levels were upregulated by SH not only in the injured axons but also in the DRG sensory neurons corresponding to sciatic sensory axons. 3. Phospho-Erk1/2 protein levels were increased in both injured axonal area and DRG sensory neurons by SH. Phospho-Erk1/2 was also found in non-neuronal cells in the injured axons. 4. SH elevated levels of Cdc2 protein produced in Schwann cells in the distal portions of injured sciatic nerves. 5. The neurite outgrowth of DRG sensory neurons in culture was augmented by SH, and these changes were positively associated with GAP-43 production levels in the DRG neurons. Conclusions: These data suggest that SH extract improves the regenerative responses of injured peripheral neurons, and thus may be useful for understanding molecular basis for the development of therapeutic strategies.

고농도 U-46619에 의한 혈관의 수축에 대한 Resveratrol의 억제 작용에서 MEK 활성 또는 Rho-kinase 활성의 변화: 내피 비의존적 수축성 조절 (The Effect of Resveratrol on U-46619 (High Concentration)-induced Vasoconstriction Regulating MEK or Rho-kinase Activity)

  • 제현동
    • 약학회지
    • /
    • 제55권2호
    • /
    • pp.138-144
    • /
    • 2011
  • The aim of present study was to investigate the possible influence and related mechanism of resveratrol on U-46619 (high concentration)-induced vasoconstriction. Agonist-induced vascular smooth muscle contractions involve the activation of thick or thin filament pathway. However, there are no reports addressing the question whether this pathway is involved in resveratrol-induced relaxation in rat aortae contracted with high U-46619. We hypothesized that MEK or Rho-kinase inhibition plays a role in vascular relaxation evoked by resveratrol in rat aortae. Endothelium-denuded arterial rings from male Sprague-Dawley rats were used and isometric contractions were recorded using a computerized data acquisition system. Resveratrol fully inhibited U-46619 in low concentration-induced contraction regardless of endothelial function. However, resveratrol partially decreased U-46619 in high concentration-induced contraction regardless of endothelial function. Interestingly, only in U-46619 (high concentration)-induced contraction, no significant decrease was observed in phospho-ERK1/2 levels and slight decrease in phospho-MYPT1 levels suggesting that additional pathways different from them or endothelial nitric oxide synthesis might be involved in the vasorelaxation. In conclusion, in high U-46619-contracted rat aortae, resveratrol showed relaxation response regardless of endothelial function significantly but slightly decreasing MYPT1 phosphorylation rather than ERK1/2 phosphorylation.

Gluconacetobacter spp. 스타터로 발효한 콤부차의 생리활성 (Biological Activities of Kombucha by Stater Culture Fermentation with Gluconacetobacter spp.)

  • 고혜명;신승식;박성수
    • 한국식품영양과학회지
    • /
    • 제46권7호
    • /
    • pp.896-902
    • /
    • 2017
  • 본 연구는 감귤 콤부차의 산업화를 위한 발효 균주 표준화를 위하여 콤부차에서 분리된 3가지 균주(Gluconacetobacter xylinus, Gluconacetobacter medellinensis, Gluconobacter oxydans)를 이용한 감귤 발효액(CK-MOX)의 기능적 특성을 탐색하고자 하였다. CK-MOX 제조 후 15일간 3일 마다 샘플링을 하였으며, 발효 기간에 따른 pH, 산도, 항산화 능력을 평가하였다. 발효에 따라 pH는 감소하였고, 산도는 증가하였다. DPPH, ABTS 라디칼 소거능, ORAC assay를 통한 항산화 능력 측정 결과 발효에 따라 항산화 능력이 향상하는 것으로 나타났으며, 방광암 세포주(EJ 세포)의 생존 억제 및 이동 억제 효과가 있는 것으로 나타났다. 특히 CK-MOX로 유도된 EJ 세포의 사멸에 MAPK pathway의 중추적인 역할을 하는 것으로 알려진 ERK의 발현이 깊이 관여하는 것으로 나타났다.

보기제통탕감미방(補氣除痛湯減味方)의 랫드 말초신경 손상에 대한 회복 효과 연구 (Therapeutic Effect of Bogijetongtanggammi-bang on Peripheral Nerve Injury)

  • 김진미;조충식;김철중
    • 대한한방내과학회지
    • /
    • 제33권1호
    • /
    • pp.83-101
    • /
    • 2012
  • Objectives : This study was aimed to investigate the therapeutic effect of Bogijetongtanggammi-bang (BJTG) on injury of the peripheral nerve tissues. Methods : Rats were divided into 2 groups. The rats of the first group were injected with Taxol (1.25 mg/kg) to their sciatic nerves, once each. The sciatic nerves of the rats of the second group were crushed by forcept for 30 seconds. Rats were administered with BJTG (400 mg/kg) or 0.9% saline for 5 days. Changes of DRG neurons, Schwann cells, Cdc2, caspase 3. phospho-p44/42 Erk1/2, phospho-vimentin and ${\beta}1$ integrin were observed by fluorescent microscope and analysed in western blot. Results : In Taxol-treated SD rat models, BJTG up-regulated neurite outgrowth, Schwann cells, Cdc2 and phospho-Erk1/2, and down-regulated caspase 3. In pressure-injured rat models, BJTG up-regulated axons of sciatic nerve, Schwann cells, Cdc2, phospho-vimentin, ${\beta}1$ integrin, and down-regulated caspase 3. Conclusions : Taken together, BJTG was promotive of nerve regeneration on SNI as well as Taxol-induced nerve injury. BJTG had a pharmaceutical property enhancing recovery of injured peripheral nerves and could be a candidate for drug development after further research.