• Title/Summary/Keyword: Phosphatidylinositol 3-kinase/protein kinase B

Search Result 51, Processing Time 0.033 seconds

Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs

  • Liu, Jingge;Ning, Caibo;Li, Bojiang;Li, Rongyang;Wu, Wangjun;Liu, Honglin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1458-1468
    • /
    • 2019
  • Objective: As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods: Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biological repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing technology on HiSeq 2500 platform. Results: As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through adipocytokine signaling pathway, mitogen-activated protein kinase, AMP-activated protein kinase, cyclic adenosine monophosphate, phosphatidylinositol 3 kinase/protein kinase B, and Notch signaling pathway. The four most abundantly expressed miRNAs were miR-122, miR-26a and miR-30a-5p (miR-122 only in P70), which play important roles in lipid metabolism. Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p, and miR-98) might be critical regulators in lipid metabolic process, including acyl-CoA synthetase long chain family member 4, ATP-binding casette A4, and stearyl-CoA desaturase. Thus, these miRNAs were the promising candidates for lipid metabolism. Conclusion: Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.

Anti-Inflammatory Effect of Ethyl Acetate Fraction Isolated from Undaria pinnatifida on Lipopolysaccharides-Stimulated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 미역(Undaria pinnatifida) Ethyl Acetate 분획물의 항염증 효과)

  • Choi, Min-Woo;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.384-392
    • /
    • 2013
  • An ethanolic extract of Undaria pinnatifida was fractionated using several solvents. Of the fractions, the ethyl acetate fraction had the greatest inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophage cells. Using this fraction (U. pinnatifida ethyl acetate extract, UPE), we investigated the molecular mechanism underlying its inhibitory effect on LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to $100{\mu}g/mL$ UPE significantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression, in a dose-dependent manner. Similarly, UPE treatment markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), while it strongly suppressed the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) by preventing proteolytic degradation of inhibitor of nuclear factor ${\kappa}B$ $(I{\kappa}B)-{\alpha}$. Moreover, UPE treatment significantly reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated cells. These results indicate that UPE contains anti-inflammatory compounds and suggest that it might be used as a functional food material that assists in prevention of inflammatory diseases.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells

  • Lin, Chang-Ming;Ma, Ji-Min;Zhang, Li;Hao, Zong-Yao;Zhou, Jun;Zhou, Zhen-Yu;Shi, Hao-Qiang;Zhang, Yi-Fei;Shao, En-Ming;Liang, Chao-Zhao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4469-4475
    • /
    • 2015
  • Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors ($Gd^{3+}$ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

LY294002 Induces G0/G1 Cell Cycle Arrest and Apoptosis of Cancer Stem-like Cells from Human Osteosarcoma Via Down-regulation of PI3K Activity

  • Gong, Chen;Liao, Hui;Wang, Jiang;Lin, Yang;Qi, Jun;Qin, Liang;Tian, Lin-Qiang;Guo, Feng-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3103-3107
    • /
    • 2012
  • Osteosarcoma, the most common primary mesenchymal malignant tumor, usually has bad prognosis in man, with cancer stem-like cells (CSCs) considered to play a critical role in tumorigenesis and drug-resistance. It is known that phosphatidylinositol 3-kinase (PI3K) is involved in regulation of tumor cell fates, such as proliferation, cell cycling, survival and apoptosis. Whether and how PI3K and inhibitors might cooperate in human osteosarcoma CSCs is still unknown. We therefore evaluated the effects of LY294002, a PI3K inhibitor, on the cell cycle and apoptosis of osteosarcoma CSCs in vitro. LY294002 prevented phosphorylation of protein kinase B (PKB/Akt) by inhibition of PI3K phosphorylation activity, thereby inducing G0/G1 cell cycle arrest and apoptosis in osteosarcoma CSCs. Further studies also demonstrated that apoptosis induction by LY294002 is accompanied by activation of caspase-9, caspase-3 and PARP, which are involved in the mitochondrial apoptosis pathway. Therefore, our results indicate PI3K inhibitors may represent a potential strategy for managing human osteosarcoma via affecting CSCs.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility

  • Jin, Su Hyun;Kim, Hyunsoo;Gu, Dong Ryun;Park, Keun Ha;Lee, Young Rae;Choi, Yongwon;Lee, Seoung Hoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.356-361
    • /
    • 2018
  • Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, mediates interactions between actin filaments and cytoplasmic targets. However, the role of ABLIM1 in osteoclast and bone metabolism has not been reported. In the present study, we investigated the role of ABLIM1 in the receptor activator of $NF-{\kappa}B$ ligand (RANKL)-mediated osteoclastogenesis. ABLIM1 expression was induced by RANKL treatment and knockdown of ABLIM1 by retrovirus infection containing Ablim1-specific short hairpin RNA (shAblim1) decreased mature osteoclast formation and bone resorption activity in a RANKL-dose dependent manner. Coincident with the downregulated expression of osteoclast differentiation marker genes, the expression levels of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), critical transcription factors of osteoclastogenesis, were also decreased in shAblim1-infected osteoclasts during RANKL-mediated osteoclast differentiation. In addition, the motility of preosteoclast was reduced by ABLIM1 knockdown via modulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/Rac1 signaling pathway, suggesting another regulatory mechanism of ABLIM1 in osteoclast formation. These data demonstrated that ABLIM1 is a positive regulator of RANKL-mediated osteoclast formation via the modulation of the differentiation and PI3K/Akt/Rac1-dependent motility.

LETM1 Promotes Gastric Cancer Cell Proliferation, Migration, and Invasion via the PI3K/Akt Signaling Pathway

  • Zhang, Yunfeng;Chen, Lele;Cao, Yifan;Chen, Si;Xu, Chao;Xing, Jun;Zhang, Kaiguang
    • Journal of Gastric Cancer
    • /
    • v.20 no.2
    • /
    • pp.139-151
    • /
    • 2020
  • Purpose: Globally, there is a high incidence of gastric cancer (GC). Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) is reported to play a vital role in several human malignancies. However, there is limited understanding of the role of LETM1 in GC. This study aims to investigate the effects of LETM1 on proliferation, migration, and invasion of GC cells. Materials and Methods: The expression levels of LETM1 in the normal gastric mucosal epithelial cells (GES-1) and GC cells were analyzed by quantitative real-time polymerase chain reaction and western blotting. CCK-8, wound healing, and Transwell invasion assays were performed to evaluate the effect of LETM1 knockdown or overexpression on the proliferation, migration, and invasion of the GC cells, respectively. Additionally, the effect of LETM1 knockdown or overexpression on GC cell apoptosis was determined by flow cytometry. Furthermore, the effect of LETM1 knockdown or overexpression on the expression levels of PI3K/Akt signaling pathway-related proteins was evaluated by western blotting. Results: The GC cells exhibited markedly higher mRNA and protein expression levels of LETM1 than the GES-1 cells. Additionally, the knockdown of LETM1 remarkably suppressed the GC cell proliferation, migration, and invasion, and promoted the apoptosis of GC cells, which were reversed upon LETM1 overexpression. Furthermore, the western blotting analysis indicated that LETM1 facilitates GC progression via the PI3K/Akt signaling pathway. Conclusions: LETM1 acts as an oncogenic gene to promote GC cell proliferation, migration, and invasion via the PI3K/Akt signaling pathway. Therefore, LETM1 may be a potential target for GC diagnosis and treatment.

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.