References
- Nguyen P, Leray V, Diez M, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 2008;92:272-83. https://doi.org/10.1111/j.1439-0396.2007.00752.x
- Takeuchi-Yorimoto A, Yamaura Y, Kanki M, et al. MicroRNA-21 is associated with fibrosis in a rat model of nonalcoholic steatohepatitis and serves as a plasma biomarker for fibrotic liver disease. Toxicol Lett 2016;258:159-67. https://doi.org/10.1016/j.toxlet.2016.06.012
- Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005;438:685-9. https://doi.org/10.1038/nature04303
- Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012;122:2884-97. https://doi.org/10.1172/JCI63455
- Gerin I, Clerbaux LA, Haumont O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010;285:33652-61. https://doi.org/10.1074/jbc.M110.152090
- Kong Y, Han JH. MicroRNA: biological and computational perspective. Genomics Proteomics Bioinformatics 2005;3:62-72. https://doi.org/10.1016/S1672-0229(05)03011-1
- Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 2010;51:1513-23. https://doi.org/10.1194/jlr.M004812
- Kovalchuk A, Ilnytskyy Y, Rodriguez-Juarez R, et al. Growth of malignant extracranial tumors alters microRNAome in the prefrontal cortex of TumorGraft mice. Oncotarget 2017;8:88276-93. https://doi.org/10.18632/oncotarget.19835
- Wang D, Liang G, Wang B, et al. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization. Sci Rep 2016;6:21194. https://doi.org/10.1038/srep21194
- Gaffo E, Zambonelli P, Bisognin A, Bortoluzzi S, Davoli R. miRNome of Italian Large White pig subcutaneous fat tissue: new miRNAs, isomiRs and moRNAs. Anim Genet 2014;45:685-98. https://doi.org/10.1111/age.12192
- Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25. https://doi.org/10.1186/gb-2009-10-3-r25
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Bohme HJ, Sparmann G, Hofmann E. Biochemistry of liver development in the perinatal period. Experientia 1983;39:473-83. https://doi.org/10.1007/BF01965164
- Ponsuksili S, Murani E, Walz C, Schwerin M, Wimmers K. Preand postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol Genomics 2007;29:267-79. https://doi.org/10.1152/physiolgenomics.00178.2006
- Yuhong J, Leilei T, Fuyun Z, et al. Identification and characterization of immune-related microRNAs in blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol 2016;49:470-92. https://doi.org/10.1016/j.fsi.2015.12.013
- Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87-98. https://doi.org/10.1016/j.cmet.2006.01.005
- Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198-201. https://doi.org/10.1126/science.1178178
- Lattka E, Illig T, Koletzko B, Heinrich J. Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol 2010;21:64-9. https://doi.org/10.1097/MOL.0b013e3283327ca8
- Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999;40:1549-58. https://doi.org/10.1016/S0022-2275(20)33401-5
- Sun D, Zhang J, Xie J, et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 2012;586:1472-9. https://doi.org/10.1016/j.febslet.2012.03.068
- Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013;19:892-900. https://doi.org/10.1038/nm.3200
- Ma Z, Li H, Zheng H, et al. MicroRNA-101-2-5p targets the ApoB gene in the liver of chicken (Gallus Gallus). Genome 2017;60:673-8. https://doi.org/10.1139/gen-2017-0020
- Wan M, Leavens KF, Saleh D, et al. Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c. Cell Metab 2011;14:516-27. https://doi.org/10.1016/j.cmet.2011.09.001
- Yang J, Craddock L, Hong S, Liu ZM. AMP-activated protein kinase suppresses LXR-dependent sterol regulatory elementbinding protein-1c transcription in rat hepatoma McA-RH7777 cells. J Cell Biochem 2009;106:414-26. https://doi.org/10.1002/jcb.22024
- Wang Y, Zhu K, Yu W, et al. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1. Biochem Biophys Res Commun 2017;493:227-32. https://doi.org/10.1016/j.bbrc.2017.09.042
- Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 2013;33:2724-32. https://doi.org/10.1161/ATVBAHA.113.302004
- el Azzouzi H, Leptidis S, Dirkx E, et al. The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 2013;18:341-54. https://doi.org/10.1016/j.cmet.2013.08.009
- Chen S, Wen X, Zhang W, et al. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1beta axis in high-fat diet-induced hyperlipidemic mice. FASEB J 2017;31:1085-96. https://doi.org/10.1096/fj.201601022R
- Duarte A, Poderoso C, Cooke M, et al. Mitochondrial fusion is essential for steroid biosynthesis. PLoS One 2012;7:e45829. https://doi.org/10.1371/journal.pone.0045829
- Ye D, Hoekstra M, Out R, et al. Hepatic cell-specific ATP-binding cassette (ABC) transporter profiling identifies putative novel candidates for lipid homeostasis in mice. Atherosclerosis 2008;196:650-8. https://doi.org/10.1016/j.atherosclerosis.2007.07.021
Cited by
- The Effect of RBP4 on microRNA Expression Profiles in Porcine Granulosa Cells vol.11, pp.5, 2019, https://doi.org/10.3390/ani11051391