• Title/Summary/Keyword: Phenolic acid

Search Result 1,593, Processing Time 0.027 seconds

Role of NADPH Oxidase-Mediated Generation of Reactive Oxygen Species in the Mechanism of Apoptosis Induced by Phenolic Acids in HePG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1183-1189
    • /
    • 2005
  • Although plant-derived phenolic acids have been reported to have anti-cancer activity, the exact mechanism is not completely understood. In this study, we investigated the role for reactive oxygen species (ROS) as a mediator of the apoptosis induced by caffeic acid (CA) and ferulic acid (FA), common phenolic acids in plants in HepG2 human hepatoma cells. CA and FA reduced cell viability, and induced apoptotic cell death in a dose-dependent manner. In addition, they evoked a dose-related elevation of intracellular ROS. Treatment with various inhibitors of NADPH oxidase (diphenylene iodonium, apocynin, neopterine) significantly blunted both the generation of ROS and the induction of apoptosis induced CA and FA. These results suggest that ROS generated through activation of NADPH oxidase may play an essential role in the apoptosis induced by CA and FA in HepG2 cells. These results further suggest that CA and FA may be valuable for the therapeutic management of human hepatomas.

Optimization of Conditions for High Concentration of Eleutheroside E and Chlorgenic Acid Components of Acanthopanax koreanum Stem Extract

  • Kim, Sung Gi;Yang, Byung Wook;Lee, Jae Bum;Kim, Sa Hyun;Ko, Sung Kwon
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.319-326
    • /
    • 2020
  • This study was conducted to develop a new functional material by optimizing the conditions for high concentrations of chlorogenic acid and eleutheroside E in Acanthopanax koreanum stem. The total phenolic compound content was the highest in the 20 hours sonication Acanthopanax koreanum stem extract (UAK-20). In addition, eleutheroside E, a typical functional ingredient of Cortex Acanthopanacis, in the 20 hours treated Acanthopanax koreanum stem extract showed the highest content at 1.646%. However, another functional ingredient, chlorogenic acid, showed the highest content of 2.625% in 1 hour treated Acanthopanax koreanum stem extract. Therefore, it is considered that the optimal conditions for high concentrations of total phenolic compound and eleutheroside E are 20 hours sonication Acanthopanax koreanum stem extract.

Differences in Phenolic Compounds between Korean Ginseng and Mountain Ginseng (고려인삼과 장뇌삼의 페놀성 성분 비교 연구)

  • 유병삼;이호재;변상요
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.120-124
    • /
    • 2000
  • Differences in phenolic $\infty$mpounds were observed between cultured and mountain ginsengs. Cinnamic acid and p-hydroxy­b benzoic acid in Korean mountain ginseng and Chinese mountain ginseng were much higher than those in Korean ginseng. C Contents of the esculetin in Korean cultured ginseng and Korean mountain ginseng were higher than that in Chinese m mountain ginseng. The highest contents of esculetin in Korean mountain ginseng was$47.2\mu\textrm{g}/g$. Contents of the ferulic acid a and caffeic acid in red $\infty$lored Korean mountain ginseng were higher than any other ginseng.

  • PDF

Anticariogenic Activity and Glucosyltransferase Inhibition of Phenolic Compounds (페놀성 화합물의 항충치활성 및 Glucosyltransferase 억제효과)

  • Kim, Seon-Jae;Park, In-Bae;Kang, Seong-Gook;Chung, Dong-Ok;Jung, Soon-Teck
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.5
    • /
    • pp.603-607
    • /
    • 2005
  • Fourteen phenolic compounds(benzoic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, syringic acid, gallic acid, caffeic acid, ferulic acid, (+)-catechin, quercetin, rutin, catechol, chlorogenic acid and L-ascorbic acid) were examined for their effects on the anticarigenic activity. Among tested samples, catechol was significantly inhibited the S. mutans, exhibiting an clear zone 18.5-19.5mm by 10 mg/disc level. The minimal inhibition concentration(MIC) of the phenolic compounds for Streptococcus mutans, M1 and M2 strain were determined as 2,000 ppm, whereas catechol was 1,000 ppm. The activity of glucosyltransferase(GTase) was significantly inhibited by catechol, at 10 ppm(58.7%), 50 ppm(60.7%) and 100 ppm(88.4%) and 500 ppm(89.6%), respectively. Among them, catechol showed most significant anticariogenic activity as well as inhibition of GTase activity.

Mechanisms of Humic Acid-Heavy Metal Complexation (부식산(腐植酸)-중금속(重金屬) 착화합물형성(錯化合物形成) 반응(反應)에 대한 Mechanism)

  • Lee, Jyung-Jae;Chang, Sang-Moon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.114-122
    • /
    • 1995
  • Complexation experiment between humic acid and heavy metal cations was conducted to clear information on heavy metal adsorption by soil organic constituent. The absorbance of UV-visible light of humic acid-metal complexes increased with increasing wavelength, and the order of their absorbance was in the order of Zn->Cd->Cu- saturated humic acid. Carboxyl and phenolic OH groups participated in the complex formation between heavy metal cations and functional groups of humic acid, and the amounts complex was in the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ $\geq$ $Cd^{+{+}}$. The stability constants of humic acid-metal complexes increased with increasing pH, and the order of first stability constants was $Zn^{+{+}}$ > $Cd^{+{+}}$ > $Cu^{+{+}}$, and those of second and overall stability constants were $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. With increasing pH, the average binding numbers betwen heavy metal cations and functional groups of humic acid increased the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. It was postulated that two types of complexations between heavy metal cations and functional groups of humic acid. One was the reactions in which only carboxyl groups participated to form complexes, and the other was those in which both carboxyl and phenolic OH groups simultaneously participated.

  • PDF

Change in the Polyphenol Content of Cheongdobansi Persimmon Fruit during Development ('청도반시' 과실의 성장 중 일반 및 폴리페놀 성분의 변화)

  • Lee, Yun-Rae;Chung, Hun-Sik;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • The proximate composition, and the levels of total phenols, phenolic acids, and DPPH radical scavenging activity in Cheongdobansi persimmon fruits assayed during development (from July to October), were investigated. All of moisture, crude protein and crude fiber contents decreased as picking time was delayed, however, crude fat content rose. Crude fiber content increased after September. Total phenol content tended to fall during development. The principal phenolic acids were chlorogenic acid, caffeic acid, p-coumaric acid and salicylic acid; the level of each phenolic acid tended to decrease during development. DPPH radical scavenging activity fell as picking time was delayed. Thus, harvest time influenced the levels of chemical components and the antioxidative properties of persimmon fruit. It follows that unripe fruit may be utilized as a raw material yielding many useful products.

Identification of Biologically Active Substances from Ginkgo biloba L. (은행잎에 함유된 생리활성물질의 동정)

  • Nam, S.J.;Kim, K.U.;Shin, D.H.;Hwang, S.J.
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.421-430
    • /
    • 1997
  • This experiment was conducted to detect the presence of allelopathic substances in the leaves of Ginkgo biloba L. Water extracts from G. biloba leaves which collected at different season markedly inhibited the germination and growth of O. sativa, E. crus-galli, D. sanguinalis, and L. sativa, indicating the presence of biological substances. Linolenic and palmitic acid were the major fatty acids of G. biloba leaves. The biochemical substances such as salicylic arid, p-coumaric acid, catechol, hydroquinone, orchinol, ferulic acid, phloroglucinol, and umbelliferone etc., belonging to the phenolic, compounds were, detected in a large amount, which may be responsible for exhibition inhibitory effects. The common phenolic compounds were detected in the early-harvested and late-harvested G. biloba leaves were salicylic and p-coumaric acid. All these compounds were related to the allelopathic activities in G. biloba leaves.

  • PDF

Identification of Biologically Active Substances from Medicinal Plants (약용식물(藥用植物)(음나무, 오가피)로부터 생리활성물질(生理活性物質) 검정(檢定))

  • Lee, I.J.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.289-298
    • /
    • 1987
  • This study was conducted to investigate the presence of biologically active substances such as phenolic acids, fatty acids and organic acids in the medical plants like Kalopanax pictum and Acanthopanacis cortex. Alcohol extracts of K. pictum and A. cortex showed complete inhibition of lettuce seed germination, indicating that these plants contained the biologically active substances. Eleven phenolic acids including protocatechuic acid were identified from K. pictum and A. cortex by GLC, and the contents of total phenolic acid were 1.7917mg/g in K. pictum, and 0.9567mg/g in A. cortex. Polyphenols such as neochlorogenic acid, chi orogenic acid, scopoletin, rutin and kaempferolglycoside which were not detected by GLC were anayzed by HPLC, and among phenolic acids indentified chi orogenic acid seemed to be the major acid in both K. pictum and A. cortex presented in amount of 23.7 and 13.0ppm, respectively. K. pictum contained 5.26mg/g of fatty acids and 27.69mg/g of organic acids, and A. cortex possessed 3.22mg/g of fatty acids and 9.80mg/g of organic acids, linoleic and oxalic acid appeared to be the major fatty and organic acids, representing more than 50% of total fatty acids and 80% of total organic acids.

  • PDF

Antioxidant Activities of the Ethanol Extract of Hamcho (Salicornia herbacea L.) Cake Prepared by Enzymatic Treatment

  • Oh, Ji-Hae;Kim, Eun-Ok;Lee, Sung-Kwon;Woo, Mee-Hee;Choi, Sang-Won
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.90-98
    • /
    • 2007
  • The antioxidant activities of water ($H_2O$) and ethanol (EtOH) extracts from hamcho (Salicornia herbacea L.) juice and cake prepared by enzymatic treatments were evaluated by in vitro assays against DPPH, superoxide, and hydroxyl radicals. Among the $H_2O$ and EtOH extracts from five different carbohydrases treated, the EtOH extract from viscozyme-treated hamcho cake had higher yield and phenolic content, and exhibited the strongest radical scavenging activity against DPPH ($IC_{50}=186.91\;{\mu}g/mL$), superoxide ($IC_{50}=87.54\;{\mu}g/mL$), and hydroxyl radicals ($IC_{50}=367.07\;{\mu}g/mL$). Antioxidant assay-guided fractionation and purification of the EtOH extract led to isolation and identification of five phenolic compounds, procatechuic, ferulic and caffeic acids, quercetin, and isorhamnetin. Most of these phenolic compounds exhibited considerable DPPH, superoxide, and hydroxyl radical scavenging activities, and in particular, caffeic and ferulic acids had stronger superoxide and hydroxyl radical scavenging activities than the well-known antioxidant radical scavenger, (+)-catechin (p<0.05). Quercetin and isorhamnetin were the primary compounds responsible for the strong antioxidant activity in the EtOH extract of the viscozyme-treated hamcho cake. Meanwhile, these five phenolic compounds were detected in the EtOH extract of the viscozyme-treated hamcho cake at the following levels (dry base of hamcho); procatechuic acid (1.54 mg%), caffeic acid (6.87 mg%), ferulic acid (8.45 mg%), quercetin (12.63 mg%), and isorhamnetin (6.65 mg%). However, three of these phenolic compounds (procatechuic, caffeic acid, and ferulic acids) were detectable in the $H_2O$ extract of viscozyme-treated hamcho juice. These results suggest that the EtOH extract of viscozyme-treated hamcho cake may be a potential source of natural antioxidants.

Inhibitory Effect of the Phenolic Compounds from Apples Against Oxidative Damage and Inflammation

  • Sim, Jang-Seop;Jeong, Jin-Boo;Lee, Jong-Hwa;Kwon, Tae-Hyung;Cha, Young-Joon;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.487-497
    • /
    • 2010
  • ROS have been associated with pathogenic processes including carcinogenesis through direct effect on DNA and play an important role in the pathogenesis of inflammation. Because of many types of phenolic acid derivatives and flavonoids, apples have been one of the human diet since ancient times and are one of the most commonly consumed fruits in worldwide. In this study, catechin, chlorogenic acid and phlorizin dihydrate were purified and identified by HPLC and GC/MS. The contents of catechin, chlorogenic acid and phlorizin dihydrate were 1.01 mg, 7.01 mg and 3.67 mg/ kg wet weight, respectively. Catechin and phlorizin dihydrate were found to significantly inhibit oxidative DNA damage, while chlorogenic did not affect. Also, catechin inhibits NO and $PGE_2$ production via suppressing iNOS and COX-2 expression. However, chlorogenic acid and phlorizin dihydrate did not affect. Our results show that catechin may be the most active phenolic compound in anti-oxidative damage and anti-inflammatory effect.