• Title/Summary/Keyword: Phenol.formaldehyde resin

Search Result 90, Processing Time 0.025 seconds

Evaluating The Water Resistance of Wood Adhesives Formulated with Chicken Feather Produced from Poultry Industry (도계부산물인 닭털을 이용한 목재접착제의 내수성 평가)

  • Park, Dae-Hak;Yang, In;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.126-138
    • /
    • 2017
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a raw material of wood adhesives. For the purpose, adhesive resins were formulated with NaOH- and $H_2SO_4$-hydrolyzed CF as well as crosslinkers, and then the properties and water resistance of the adhesive resins against hot water were measured. CF was made of mainly keratin-type protein, and no or very low content of heavy metals was detected. Hydrolysis rate of CF increased as NaOH concentration in hydrolysis solutions increased. However, in order to minimize the loss of adhesive property of protein itself by the severe hydrolysis of CF and to seek its proper hydrolysis conditions, NaOH concentrations in hydrolysis solution determined to adjust to 5%, 7.5% and 10%. In the NaOH-hydrolyzed CF, $H_2SO_4$-hydrolyzed CF as a hardener and crosslinker were added to formulate CF-based adhesive resins. Solid content of the resins ranged from 28.3% to 44.8% depending on hydrolysis conditions and type of crosslinker. Viscosity of the resins at $25^{\circ}C$ was very high. However, when the temperature of the resins was increased to $50^{\circ}C$, the viscosity decreased greatly and thus the resins could be applied as a sprayable resin. Retention rate measured to evaluate the water resistance of adhesive resins was the highest in the cured resin formulated with 5% NaOH-hydrolyzed CF and 5% $H_2SO_4$-hydrolyzed CF of 10% based on the solid weight as a hardener. Retention rate depending on crosslinkers added into adhesive resins was the highest phenol-formaldehyde (PF) followed by melamine-urea-formaldehyde (MUF) and formalin. The retention rate of CF-based adhesives formulated with 5% NaOH-hydrolyzed CF, PF and $H_2SO_4$-hydrolyzed CF of 10% and over did not differ statistically from that of commercial MUF resins. All of CF-based adhesives formulated with PF as a crosslinker and one with 5% NaOH-hydrolyzed CF of 55%, 5% $H_2SO_4$-hydrolyzed CF of 15%, and MUF of 30% on the basis of solid weight could be substituted for commercial urea-formaldehyde resins, From the results, CF can be used as a raw material of wood adhesives if hydrolyzed in proper conditions.

Electrical Properties and Far-infrared Ray Emission of Ceramics Manufactured with Sawdust and Rice Husk (톱밥과 왕겨로 제조된 세라믹의 전기적 성질과 원적외선 방사특성)

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.106-112
    • /
    • 2016
  • This study investigated electrical properties and far-infrared ray emission according to the carbonizing temperature and phenol-formaldehyde (PF) resin impregnation ratio of ceramics manufactured using sawdust and rice husk. The far-infrared ray emission values and emission energy values decreased as the carbonizing temperature increased. The far-infrared ray emission values of the ceramics manufactured using a carbonizing process at $600^{\circ}C$ and a board with a PF resin impregnation ratio of 60 percent was 0.930; the emission energy presented the highest value of $4.32{\times}10w/m^2$. The electric resistance decreased as the carbonizing temperature increased. For the increase in the carbonizing temperature above $1200^{\circ}C$, ceramics was very close to a conductor due to the small resistance. The power consumption increased by the decrease of electric resistance and increase of the electric current in the case of a higher resin impregnation ratio.

Effect of Heating Rate and Keeping Time at Maximum Temperature on the Properties of Woodceramics Made from Thinned Logs (승온속도 및 최고온도 유지시간이 간벌재로 제조된 우드세라믹의 성질에 미치는 영향)

  • Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.38-44
    • /
    • 2005
  • This research investigated the variation of density, the weight loss, dimensional shrinkage and heat conduction by the heating rate and keeping time at maximum temperature of woodceramics, when sawdust boards made from thinned logs of Pinus densiflora, Larix kaemferi and Pinus koraiensis were impregnated with phenol-formaldehyde resin, and then were formed by heating rate ($2^{\circ}C/min{\sim}6^{\circ}C/min$) and keeping time at maximum temperature (1~5 h). As the heating rate increased, the density and thickness shrinkage decreased, but weight loss and linear shrinkage increased. The more the keeping time at maximum temperature, the greater the linear shrinkage and thickness shrinkage. The heating conduction was superior at the heating rate is $2^{\circ}C/min$ and the keeping time at maximum temperature of 2 hs.

The Effect of Reactant Composition on the Synthesis of Resole-Type Phenolic Bead (레졸형 구형 페놀입자의 합성에서 반응물의 조성이 입자 형성에 미치는 영향)

  • Hahn, Dongseok;Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.63-67
    • /
    • 2014
  • The effects of reactant composition on the particle size distribution, synthetic yield, and density of Phenol-formaldehyde bead were examined in the synthesis of resol-type phenolic resin. Decrease of the content of DI water as dispersion media can increase the viscosity of suspension, which may cause the difference of particle size distribution and aggregation. The average particle size of synthesized beads was also decreased with the increasing content of stabilizer which can affect the interfacial area. The amount of crosslinking agent showed no effect on the size distribution and synthetic yield, but it made a decrease in the density of synthesized bead due to the macropore in the bead.

Destructive and Non-destructive Tests of Bamboo Oriented Strand Board under Various Shelling Ratios and Resin Contents

  • Maulana, Sena;Gumelar, Yuarsa;Fatrawana, Adesna;Maulana, Muhammad Iqbal;Hidayat, Wahyu;Sumardi, Ihak;Wistara, Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.519-532
    • /
    • 2019
  • The objectives of this study were to evaluate the effects of shelling ratio and resin content on the properties of bamboo oriented strand board (BOSB) from betung (Dendrocalamus asper) and to determine the correlation between the results of dynamic and static bending tests. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure and followed by washing with 1% NaOH solution. Three-layer BOSB with the core layer perpendicular to the surface was formed with shelling ratios (face:core ratio) of 30:70; 40:60; 50:50; 60:40 and binded with 7% and 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of BOSB was conducted in accordance with the JIS A 5908:2003 standard and the results were compared with CSA 0437.0 standard for commercial OSB (Grade O-1). Non-destructive testing was conducted using Metriguard Model 239A Stress Wave Timer which has a wave propagation time from 1 to $9,999{\mu}s$ and a resolution of $1{\mu}s$. BOSB with 8% resin content showed better physical and mechanical properties than those with 7% resin content. The increase of the face layer ratio improved the strength of BOSB in parallel direction to the grain. The results suggested that shelling ratio of 50:50 could be used as a simple way to reduce PF resin requirements from 8% to 7% and to meet the requirements of CSA 0437.0 standard. The results of non-destructive and destructive tests showed a strong correlation, suggesting that non-destructive test can be used to estimate the bending properties of BOSB.

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF

Effects of Steam Treatment on Physical and Mechanical Properties of Bamboo Oriented Strand Board

  • Maulana, Sena;Busyra, Imam;Fatrawana, Adesna;Hidayat, Wahyu;Sari, Rita Kartika;Sumardi, Ihak;Wistara, I Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.872-882
    • /
    • 2017
  • The objective of this study was to evaluate the properties of bamboo oriented strand board (B-OSB) from andong (Gigantochloa psedoarundinacea) and betung (Dendrocalamus asper) with and without steam treatment. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure. The extractive content of bamboo strands before and after steam treatment were determined according to a standard (TAPPI T 204 om-88). Three-layer B-OSB with the core layer perpendicular to the surface and back layers were formed and binded with 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of the boards were conducted in accordance with the JIS A 5908:2003 standard. The results showed that steam treatment of bamboo strands significantly reduced the extractive content. Steam treatment tended to increase the dimensional stability and mechanical properties of B-OSB from andong and betung. The results showed that the dimensional stability and bending strength of B-OSB from betung was higher than those of andong. The internal bond strength of B-OSB from andong was higher than betung owing to a greater amount of extractives dissolved during the steam treatment.

Manufacture of Wood Veneer-Bamboo Zephyr Composite Board - I. Properties of Bamboo Zephyr and Composite Board Made from Moso, Giant Timber and Hachiku Bamboo -

  • Roh, Jeang Kwan;Kim, Jae Kyung;Kim, Sa Ick;Ra, Jong Bum;Kim, Yu Jung;Park, Sang Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.42-51
    • /
    • 2004
  • Wood veneer-bamboo zephyr composite board (WBCB) was manufactured to evaluate the properties of bamboo as alternative raw materials for the manufacture of composite panels. Bamboo zephyr was prepared using Moso bamboo (Phyllostachys pubesens Mazel. et Z), Giant timber bamboo (Phyllostachys bambusoides Sieb. et Zucc), and Hachiku bamboo (Phyllostachys nigra var. henosos Stapf). The effect of age and species of bamboo on zephyr production was investigated in terms of the pass number of bamboo split through the rollers, and the width increasing rate of bamboo split. Five-ply WBCBs were produced with Keruing veneers as face and back layers, leading to three layers of bamboo zephyr sheets as core layer. Each layer was placed so that its grain direction was at right angles to that of the adjacent layer and the layers were bonded together with phenol-formaldehyde (PF) resin.The pass number of bamboo split was increased with an increase of the thickness of culm wall. At the same thickness, Moso bamboo showed no effect of the age of bamboo on the pass number. The pass number of split of Giant timber bamboo was lower than that of Moso bamboo. No significant effect of bamboo species and age on the width of zephyr produced was observed. The width of zephyr obtained could be expressed as a function of diameter multiplied by thickness of culm wall. The physical and mechanical properties of WBCB manufactured in all given conditions did not show any significant differences, and they were above the requirement of Korean Standard (KS).

Effects of Precipitation pH of Black Liquor on Characteristics of Precipitated and Acetone-Fractionated Kraft Lignin

  • Ega Cyntia WATUMLAWAR;Byung-Dae PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • Two important steps in utilizing technical kraft lignin (KL) from black liquor to synthesize lignin-phenol-formaldehyde (LPF) resin are its extraction via precipitation and fractionation. However, the effects of precipitation pH and acetone fractionation on the characteristics of hardwood KL have not been studied for LPF resins. Therefore, this paper reports the effects of the precipitation pH of black liquor and acetone fractionation on the characteristics of KL from mixed hardwood species for LPF resins. The precipitation was conducted at various pH levels from 3 to 9 of black liquor to obtain crude KL (C-KL), which was used in acetone fractionation to produce acetone-soluble KL (AS-KL) and acetone-insoluble KL (AI-KL). Precipitation at pH 3 and 9 produced the highest and lowest yields of C-KL, respectively. As expected, the C-KL infrared spectra were similar regardless of the precipitation pH levels. As the pH increased, the molecular weight of C-KL increased. However, the molecular weight of AS-KL and AI-KL after acetone fractionation increased to a maximum of 4,170 and 47,190 g/mol at pH 7, then decreased to 3,210 and 19,970 g/mol at pH 9, respectively. The smallest molecular weights of AS-KL and AI-KL were 3,210 and 15,480 g/mol and were found at pH 9 and 3, respectively. These results suggest that both AS-KL at pH 9 and AI-KL at pH 3 have good potential as starting lignins for synthesizing LPF resins that require cross-linking for polymerization.

Hot Pressing Technology for Improvement of Density Profile and Sound Absorption Capability of Particleboard (파티클보드의 밀도경사와 흡음성 개선을 위한 열압기술)

  • Park, Hee Jun;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • Improvement of density profile and sound absorption capability of particleboard was attempted. Three types of hot pressing methods examined ; flat-platen pressing method (A-type pressing), hot pressing in forming box (B-type pressing), and hot pressing set up jagged caul in forming box (C-type pressing). The raw materials were larch(Larix leptolepis (S, et. Z.) Gorden) shavings, phenol formaldehyde resin, and the particleboard perforated with stair type. The physical and mechanical properties such as specific gravity, bending strength (MOR), internal bonding strength (IB) and sound absorption coefficients were examined. The results are summarized as follows : 1) The MOR and internal bonding strength of the board pressed in forming box were higher than those of flat-platen pressed board. 2) The minimum density to average density ratio in thickness direction which pressed in forming box showed about 923%, in the case of 35 mm commercial particleboard and 50 mm flat-platen pressed board, its values showed about 66.4% and 865% respectively. 3) Sound absorption coefficients of the particleboard perforated with stair type were higher than those of flat-plated pressed board and commercial particleboard.