DOI QR코드

DOI QR Code

Effects of Precipitation pH of Black Liquor on Characteristics of Precipitated and Acetone-Fractionated Kraft Lignin

  • Ega Cyntia WATUMLAWAR (Department of Wood and Paper Science, Kyungpook National University) ;
  • Byung-Dae PARK (Department of Wood and Paper Science, Kyungpook National University)
  • Received : 2022.09.28
  • Accepted : 2022.12.14
  • Published : 2023.01.25

Abstract

Two important steps in utilizing technical kraft lignin (KL) from black liquor to synthesize lignin-phenol-formaldehyde (LPF) resin are its extraction via precipitation and fractionation. However, the effects of precipitation pH and acetone fractionation on the characteristics of hardwood KL have not been studied for LPF resins. Therefore, this paper reports the effects of the precipitation pH of black liquor and acetone fractionation on the characteristics of KL from mixed hardwood species for LPF resins. The precipitation was conducted at various pH levels from 3 to 9 of black liquor to obtain crude KL (C-KL), which was used in acetone fractionation to produce acetone-soluble KL (AS-KL) and acetone-insoluble KL (AI-KL). Precipitation at pH 3 and 9 produced the highest and lowest yields of C-KL, respectively. As expected, the C-KL infrared spectra were similar regardless of the precipitation pH levels. As the pH increased, the molecular weight of C-KL increased. However, the molecular weight of AS-KL and AI-KL after acetone fractionation increased to a maximum of 4,170 and 47,190 g/mol at pH 7, then decreased to 3,210 and 19,970 g/mol at pH 9, respectively. The smallest molecular weights of AS-KL and AI-KL were 3,210 and 15,480 g/mol and were found at pH 9 and 3, respectively. These results suggest that both AS-KL at pH 9 and AI-KL at pH 3 have good potential as starting lignins for synthesizing LPF resins that require cross-linking for polymerization.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea, funded by the Korean Government (MSIT) (Grant No. 2020R1A2C1005042).

References

  1. Arefmanesh, M., Nikafshar, S., Master, E.R., Nejad, M. 2022. From acetone fractionation to lignin-based phenolic and polyurethane resins. Industrial Crops and Products 178: 114604.
  2. Bang, J., Kim, J., Kim, Y., Oh, J.K., Yeo, H., Kwak, H.W. 2022. Preparation and characterization of hydrophobic coatings from carnauba wax/lignin blends. Journal of the Korean Wood Science and Technology 50(3): 149-158. https://doi.org/10.5658/WOOD.2022.50.3.149
  3. Buono, P., Duval, A., Verge, P., Averous, L., Habibi, Y. 2016. New insights on the chemical modification of lignin: Acetylation versus silylation. ACS Sustainable Chemistry and Engineering 4(10): 5212-5222. https://doi.org/10.1021/acssuschemeng.6b00903
  4. Crestini, C., Lange, H., Sette, M., Argyropoulos, D.S. 2017. On the structure of softwood kraft lignin. Green Chemistry 19(17): 4104-4121. https://doi.org/10.1039/C7GC01812F
  5. Cui, C., Sun, R., Argyropoulos, D.S. 2014. Fractional precipitation of softwood kraft lignin: Isolation of narrow fractions common to a variety of lignins. ACS Sustainable Chemistry and Engineering 2(4): 959-968. https://doi.org/10.1021/sc400545d
  6. dos Santos, P.S.B., Erdocia, X., Gatto, D.A., Labidi, J. 2014. Characterisation of kraft lignin separated by gradient acid precipitation. Industrial Crops and Products 55: 149-154. https://doi.org/10.1016/j.indcrop.2014.01.023
  7. Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665. https://doi.org/10.5658/WOOD.2020.48.5.651
  8. Gadhave, R.V., Srivastava, S., Mahanwar, P.A., Gadekar, P.T. 2019. Lignin: Renewable raw material for adhesive. Open Journal of Polymer Chemistry 9(2): 27-38. https://doi.org/10.4236/ojpchem.2019.92003
  9. Garcia, A., Toledano, A., Serrano, L., Egues, I., Gonzalez, M., Marin, F., Labidi, J. 2009. Characterization of lignins obtained by selective precipitation. Separation and Purification Technology 68(2): 193-198. https://doi.org/10.1016/j.seppur.2009.05.001
  10. Gigli, M., Crestini, C. 2020. Fractionation of industrial lignins: Opportunities and challenges. Green Chemistry 22(15): 4722-4746. https://doi.org/10.1039/D0GC01606C
  11. Helander, M., Theliander, H., Lawoko, M., Henriksson, G., Zhang, L., Lindstrom, M.E. 2013. Fractionation of technical lignin: Molecular mass and pH effects. BioResources 8(2): 2270-2282. https://doi.org/10.15376/biores.8.2.2270-2282
  12. Hwang, H., Choi, J.W. 2018. Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17-28. https://doi.org/10.5658/WOOD.2018.46.1.17
  13. Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225. https://doi.org/10.5658/WOOD.2021.49.3.213
  14. Jaaskelainen, A.S., Willberg Keyrilainen, P., Liitia, T., Tamminen, T. 2017. Carbohydrate-free and highly soluble softwood kraft lignin fractions by aqueous acetone evaporation fractionation. Nordic Pulp & Paper Research Journal 32(4): 485-492. https://doi.org/10.3183/npprj-2017-32-04_p485-492_jaaskelainen
  15. Jiang, X., Savithri, D., Du, X., Pawar, S., Jameel, H., Chang, H., Zhou, X. 2017. Fractionation and characterization of kraft lignin by sequential precipitation with various organic solvents. ACS Sustainable Chemistry and Engineering 5(1): 835-842. https://doi.org/10.1021/acssuschemeng.6b02174
  16. Kim, K.H., Kim, J.Y., Kim, C.S., Choi, J.W. 2019. Pyrolysis of lignin obtained from cinnamyl alcohol dehydrogenase (CAD) downregulated Arabidopsis thaliana. Journal of the Korean Wood Science and Technology 47(4): 442-450. https://doi.org/10.5658/WOOD.2019.47.4.442
  17. Lee, H., Kim, S., Park, M.J. 2021. Specific surface area characteristic analysis of porous carbon prepared from lignin-polyacrylonitrile copolymer by activation conditions. Journal of the Korean Wood Science and Technology 49(4): 299-314. https://doi.org/10.5658/WOOD.2021.49.4.299
  18. Lee, H.W., Jeong, H., Ju, Y.M., Youe, W.J., Lee, J., Lee, S.M. 2019. Pyrolysis properties of lignins extracted from different biorefinery processes. Journal of the Korean Wood Science and Technology 47(4): 486-497. https://doi.org/10.5658/WOOD.2019.47.4.486
  19. Li, H., Yuan, Z., Xing, Y., Li, J., Fang, J., Chang, L., Li, C. 2019. Acetone fractionation: A simple and efficient method to improve the performance of lignin for dye pollutant removal. RSC Advances 9(61): 35895-35903. https://doi.org/10.1039/C9RA07017F
  20. Li, J., Wang, W., Zhang, S., Gao, Q., Zhang, W., Li, J. 2016. Preparation and characterization of lignin demethylated at atmospheric pressure and its application in fast curing biobased phenolic resin. RSC Advances 6(71): 67435-67443. https://doi.org/10.1039/C6RA11966B
  21. Lourencon, T.V., Hansel, F.A., da Silva, T.A., Ramos, L.P., de Muniz, G.I.B., Magalhaes, W.L.E. 2015. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Separation and Purification Technology 154: 82-88. https://doi.org/10.1016/j.seppur.2015.09.015
  22. Min, C.H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. https://doi.org/10.5658/WOOD.2017.45.6.703
  23. Mun, J.S., Pe, J.A. III, Mun, S.P. 2021. Chemical characterization of kraft lignin prepared from mixed hardwoods. Molecules 26(16): 4861.
  24. Pang, T., Wang, G., Sun, H., Sui, W., Si, C. 2021. Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Industrial Crops and Products 165: 113442.
  25. Park, S.Y., Choi, J.H., Cho, S.M., Choi, J.W., Choi, I.G. 2020. Structural analysis of open-column fractionation of peracetic acid-treated kraft lignin. Journal of the Korean Wood Science and Technology 48(6): 769-779. https://doi.org/10.5658/WOOD.2020.48.6.769
  26. Sadeghifar, H., Wells, T., Le, R.K., Sadeghifar, F., Yuan, J.S., Ragauskas, A.J. 2017. Fractionation of organosolv lignin using acetone: Water and properties of the obtained fractions. ACS Sustainable Chemistry and Engineering 5(1): 580-587. https://doi.org/10.1021/acssuschemeng.6b01955
  27. Sun, R.C., Tomkinson, J., Bolton, J. 1999. Effects of precipitation pH on the physico-chemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fibre pulping. Polymer Degradation and Stability 63(2): 195-200. https://doi.org/10.1016/S0141-3910(98)00091-3
  28. Tejado, A., Pena, C., Labidi, J., Echeverria, J.M., Mondragon, I. 2007. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology 98(8): 1655-1663. https://doi.org/10.1016/j.biortech.2006.05.042
  29. Toledano, A., Garcia, A., Mondragon, I., Labidi, J. 2010. Lignin separation and fractionation by ultrafiltration. Separation and Purification Technology 71(1): 38-43. https://doi.org/10.1016/j.seppur.2009.10.024
  30. Upton, B.M., Kasko, A.M. 2015. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chemical Reviews 116(4): 2275-2306. https://doi.org/10.1021/acs.chemrev.5b00345
  31. Wang, G., Chen, H. 2013. Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Separation and Purification Technology 105: 98-105. https://doi.org/10.1016/j.seppur.2012.12.009
  32. Wibowo, E.S., Park, B.D. 2023. The role of acetone-fractionated Kraft lignin molecular structure on surface adhesion to formaldehyde-based resins. International Journal of Biological Macromolecules 225: 1449-1461. https://doi.org/10.1016/j.ijbiomac.2022.11.202
  33. Yang, B.S., Yang, J., Kim, D.Y., Kim, J.K., Hwang, W.J., Kwon, G.J. 2017. Characteristics of wood tar produced as byproduct from two types of the kiln in the manufacture of oak charcoal. Journal of the Korean Wood Science and Technology 45(6): 772-786. https://doi.org/10.5658/WOOD.2017.45.6.772
  34. Yang, I., Jeong, H., Lee, J.J., Lee, S.M. 2019. Relationship between lignin content and the durability of wood pellets fabricated using Larix kaempferi C. sawdust. Journal of the Korean Wood Science and Technology 47(1): 110-123. https://doi.org/10.5658/WOOD.2019.47.1.110
  35. Zhu, W., Westman, G., Theliander, H. 2014. Investigation and characterization of lignin precipitation in the lignoboost process. Journal of Wood Chemistry and Technology 34(2): 77-97. https://doi.org/10.1080/02773813.2013.838267
  36. Zhu, W., Westman, G., Theliander, H. 2016. Lignin separation from kraft black liquor by combined ultrafiltration and precipitation: A study of solubility of lignin with different molecular properties. Nordic Pulp & Paper Research Journal 31(2): 270-278. https://doi.org/10.3183/npprj-2016-31-02-p270-278