• Title/Summary/Keyword: Phasor measurement unit (PMU)

Search Result 30, Processing Time 0.025 seconds

Observability Analysis for Phasor Measurement Unit Placement (PMU 설치에 따른 가관측성 해석)

  • Kang, Suk-Joo;Cho, Ki-Seon;Kim, Hoi-Cheol;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1049-1053
    • /
    • 1999
  • It is important to measuring and monitoring about state vectors of power system for precise operation control. All state vectors cannot be measured because it is economically disadvantageous, so that some state vectors are determined using state estimator. Determination of observability is a important precondition of power system state estimation because state estimation can be performed when given power system is observable. Recently as time-synchronization technique progress, using the PMU(Phasor Measurement Unit), state vector can be measured directly so that voltage phasor and current phasor measurements can be used for power system estimation. In this paper, observability algorithm is proposed to determinate the observability with real/reactive injection power measurements and real/reactive lineflow power measurements of existing measurement system and with phasor measurements of PMU. The jacobian matrix is newly composed for state estimation with measurements of added PMU, and state estimation is performed with least square estimatior. Comparison between state estimation result of existing measurement system and that of measurement system added PMU is presented.

  • PDF

An Initial Placement Strategy for Optimal Placement of Phasor Measurement Units in Power Systems (페이저 측정기 치적배치를 위한 초기 배치 전략)

  • Cho, Ki-Seon;Shin, Joong-Rin;Park, Jong-Bae;Chae, Myung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.342-344
    • /
    • 2002
  • This paper presents a new strategy to find starting points for placing optimally Phasor Measurement Units(PMUs). The performance of the starting point, initial placement set of PMUs, affect critically the computational burden and/or time, because the Optimal PMU Placement (OPP) problem is formulated the combinatorial optimization. By analyzing the properties of OPP solutions on IEEE sample systems in detail, a new strategy for initial PMU placement, in this paper, is proposed. To verify the performance of the suggested strategy, the comparison with the existing strategy and the new one, on IEEE sample systems. is performed. By using the new strategy, the numbers of search spaces to solve the OPP problem is drastically decreased.

  • PDF

Optimal Placement of the Phasor Measurement Units in Power System (전력계통의 페이저 측정기 최적배치)

  • Kim, Jae-Hun;Jo, Gi-Seon;Kim, Hoi-Chul;Shin, Jung-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.313-322
    • /
    • 2000
  • This paper presents optimal placement of minimal set of Phasor Measurement Units (PMU's) and observability analysis of the network with PMU's. In order to find a observable system, a symbolic method which directly assigns an appropriate symbol for measurement or pseudo-measurement to every entry of node-branch incidence matrix is proposed. It is much simpler and easier to analyze the observability of the network with PMU's than the conventional ones. For the optimal PMU placement problem, two approaches which are based on a modified Simulated-Annealing (SA) method and a Direct Combination method are proposed. Some case studies with IEEE sample system are made to show the performance of the proposed methods are almost alike and more effective than the conventional simulated-annealing method. It is also shown that the Direct Combination method is more effective than the modified simulated-annealing one in the sense of computation burden. The results of this study showed also that the accuracy of power system estimation and system observability can be improved the proposed PMU placements.

  • PDF

Implementation of Synchronized Phasor Measurement Unit Using GPS (GPS를 이용한 동기페이저측정장치의 EMTP모델 구현)

  • Cho, Ki-Seon;Heo, Mun-Jun;Choi, Myung-Seok;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1262-1266
    • /
    • 1999
  • More precise operation and control is required to ensure the stability and security of modern large power systems that is a complicated and widely dispersed structure. To ensure the precise operation and control of modern power system, most of all, precise monitoring and measurement of the various state values of power system is required. This paper discusses phasor measurement unit using synchronization signals from the GPS satellite system- Synchronized Phasor Measurement Unit. Considering the power system operation state, the transmitting data format over modems is defined. To provide all available information, PMU process the measurements to generate three phase symmetrical component. This paper proposes the transmitted data format and implements the PMU model using EMTP/Models. The validity of proposed model is confirmed through several contingency on the simple power system.

  • PDF

Meter Optimal Placement in Measurement System with Phasor Measurement Unit (페이저 측정 시스템의 측정기 최적배치)

  • Kim, Jae-Hoon;Cho, Ki-Seon;Kim, Hoi-Cheol;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1195-1198
    • /
    • 1999
  • This paper presents optimal placement of minimal set of phasor measurement units(PMU's) and observability of measurement system with PMU. By using the incidence matrix symbolic method which directly assigns measurement and pseudo-measurement to incidence matrix, it is much simpler and easier to analyze observability. The optimal PMU set is found through the simulated-annealing(SA) and the direct combinational method. The cooling schedule parameter which is suitable to the property of problem to solve is specified and optimal placement is proven by presented direct combinational method. Search spaces are limited within reasonable feasible solution region to reduce a unnecessary one in the SA implementation based on global search. The proposed method presents to save CPU time and estimate state vectors based on optimal PMU set.

  • PDF

Optimal Placement of Phasor Measurement Unit for Observation Reliability Enhancement

  • TRAN, Van-Khoi;ZHANG, He-sheng;NGUYEN, Van-Nghia
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.996-1006
    • /
    • 2017
  • Phasor Measurement Unit (PMU) placement is a crucial problem for State Estimation (SE) of the power system, which can ensure that the power network is fully observed. Further, the observation reliability problem of the system has been concerned in the operation conditions. In this paper, based on modified weighted adjacent matrix ($A_w$), an optimal placement method is proposed to solve simultaneously two problems involving the optimal PMU placement problem and the observation reliability enhancement problem of the system. The purpose of the proposed method is to achieve both the minimum total cost and the maximum observation reliability, with a focus on increasing the security of observability, strengthening the observation reliability of buses as well as enhancing the effectiveness of redundancy. Simulations on IEEE 14, 24, 30 and 57 bus test systems are presented to justify the methodology. The results of this study show that the proposed method is not only ensuring the power network having the observability effectively but also enhancing significantly the observation reliability. Therefore, it can be a useful tool for SE of the power system.

Development of a Network Simulator for a Power Infrastructure Defense System Using IEEE PC37.118 (IEEE PC37.118을 이용한 광역 방어 시스템의 네트워크 시뮬레이터 개발)

  • Kim, Kyung-Nam;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.173-174
    • /
    • 2006
  • The power infrastructure defense system monitor and control a power system with parameters of a power system such as voltage, phasor angle, frequency and power flow which are measured at the same instance. For this, synchronized phasor measurement based on the GPS(Global Positioning System) is necessary. PMU(Phasor Measurement Unit) measures synchrophasor and transmits it to the power infrastructure defense system. For this communication, IEEE H37.118 defines a communication message format and measurement concept and we extend the protocol to transmit disturbance data. The synchrophasor data can be sent at various rates and there are several options for phasor information sent in the synchrophasor message. In this paper, we develop software that simulate communication between the power infrastructure defense system and PMU to annalize the traffic.

  • PDF

Estimation Technique of Power Transmission Line Parameter by Phasor Measurement Units (송전선로 파라메터 정밀 예측을 위한 페이저 측정기의 응용)

  • Cho, Ki-Seon;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.193-195
    • /
    • 2003
  • This paper presents an approach to estimate the power transmission line parameter by phasor measurement units(PMUs), which are synchronized to 1 pps signal of GPS. Existing approaches to estimate power transmission line parameter, are mainly off-line ones, based on faults or switching events on other neighboring lines. In this paper, to obtain static and dynamic properties of power transmission line parameter in service, the prototype of pmu-based Transmission Line Parameter Monitoring System (TLPMS) is proposed. Also, an technique to estimate parameters of transmission line described as 2-port network model and the soundness of estimated parameters are addressed.

  • PDF

Analysis and Design of FRT Detection System Using PMU (PMU를 사용한 FRT 검출시스템 설계 및 분석)

  • Kwon, Dae-Yun;Moon, Chae-Joo;Jeong, Moon-Seon;Yoo, Do-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.643-652
    • /
    • 2021
  • Accidents or faults in the transmission and distribution system are never completely avoidable, and short-circuit and earth faults are occurs despite the efforts of the TSO and DSO. Recently, the connection to the transmission and distribution system of large-capacity new and renewable distributed power has increased rapidly and has various effects on the operation of the system. In order to minimize this, connection standards such as FRT (Fault-Ride-Through) have been established to provide wind turbines or solar inverters. In the event of a major faults of the power system, the operation support shall be provided so that the operator can stably operate the system by smoothly performing connection maintenance or rapid system separation. In this paper, in order to appropriately determine whether the FRT condition, which is the grid connection criterion for a representative DERs, is sufficient, a detection system using a PMU (Phasor Measurement Unit) that measures a synchro-phasors was designed and deployment and a system accident due to a generator step-out to analyze and evaluate the proposed system based on the case.