• Title/Summary/Keyword: Phased Array System

Search Result 160, Processing Time 0.025 seconds

Modeling Phased Array Ultrasonic Testing of a Flat-Bottom Hole in a Single Medium

  • Park, Joon-Soo;Kim, Hak-Joon;Song, Sung-Jin;Seong, Un-Hak;Kang, Suk-Chull;Choi, Young-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.467-474
    • /
    • 2005
  • The expanded multi-Gaussian beam model has recently been developed that can calculate the radiation beam field from a single, rectangular transducer with great computational efficiency. In this study, this model is adopted to calculate the radiation beam field for a phased array transducer with various time delays to achieve steering and/or focusing. The calculation beam fields are compared to those obtained by well known Rayleigh-Sommerfeld integral that provides the exact solution in order to explore the validity of the expanded multi-Gaussian beam model And then, this study proposes a complete ultrasonic measurement model including the expanded beam model, far-field scattering model and system efficiency, Using the proposed model, phased array ultrasonic testing signals for a flat-bottomed hole with/without focusing were performed.

Design of a 3-D Adaptive Sampling Rate Tracking Algorithm for a Phased Array Radar (위상배열 레이다를 위한 3차원 적응 표본화 빈도 추적 알고리듬의 설계)

  • Son, Keon;Hong, Sun-Mog
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.62-72
    • /
    • 1993
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three dimensional adaptive target tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track updata illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver level detector. A detailed simulation is conducted to test the validity of our tracking algorithm for target trajectories under various conditions of maneuver.

  • PDF

Small Broadband Phased Array Antenna with Compact Phase-Shift Circuits (간결한 위상 변위 회로를 갖는 소형 광대역 위상 배열 안테나)

  • 한상민;권구형;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1071-1078
    • /
    • 2003
  • In this paper, the planar, compact, and broadband phased array antenna system for IMT-2000 applications has been investigated. Two methods far designing a low-cost and low-complex beam-farming network are proposed. First, a new compact and broadband phase shifter with continuously controlled phase bits is designed by using parallel coupled lines. Second, its equivalent phase delay line is suggested to be capable of replacing the complex phase shifter with a reference phase bit on a phased array antenna. For the purpose of achieving the broadband system, in addition to the broadband phase shifter, a wide-slot antenna with a ground reflector is utilized as an element antenna. Therefore, the phased array antenna system has achieved compact size, broad bandwidth, and wide steering angle, although it has low complexity and low fabrication cost. The 3${\times}$1 phased array antenna system has a compact size of 1.6 λ${\times}$ l.6 λ, which is the sufficient ground plane of the wide-slot antenna. Experimental results present that the S$\_$11/ has less than 15 dB within the band and its radiation patterns on an E-plane have the capability of steering an antenna beam from -29$^{\circ}$to +30$^{\circ}$.

Phased Array Ultrasonic Application for Defects Estimation of FRP Box Member (FRP 박스부재의 결함평가를 위한 위상배열초음파 적용성 평가)

  • Kwak, Kae-Hwan;Yang, Dong-Woon;Kim, Ho-Sun;Lee, Ho-Hyun;Yun, Kuk-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.69-76
    • /
    • 2010
  • The structural material with the highest possibility of new materials that will be used in the future construction field is fiber reinforced polymer. The current studies on FRP members by using such excellent material characteristics mostly focused on stability, composite problem, and durability of FRP members. The initially constructed FRP members secure excellent stability and durability compared to reinforced concrete and steel materials, but measures for defections during the periodical inspection, methods for detecting breakages, and maintenance and reinforcement are not insufficient. Accordingly, this study proposed a measurement system using the FRP sensor to evaluate the safety of the FRP modular box member, and applied the phased array ultrasonic technique to detect the defects and damage likely to occur during the performance period.

Optically Driven Phased Array Antenna (광섬유를 이용한 위상 배열 안테나)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.981-983
    • /
    • 1998
  • In this paper, we present theoretical designs for a beam steering phased array antenna that uses a true time delay optical feeder. A variable true time delay is achieved by employing one tunable laser source and high dispersion fibers with different length. The wavelength tunable optical carrier propagation in a high-dipersion fiber realizes a true time delay, with the steering direction set by a single voltage controlling the wavelength. Beamsteering of a phased array antenna is obtained by controlling the tunable laser source. An employment of a high dispersion fiber response shows wide-band operation of beem steering antenna system.

  • PDF

Design of beam steering dipole phased array antenna systems for IMT-2000 base station (IMT-2000 기지국용 빔 조향 다이폴 위상배열 안테나 시스템 설계)

  • 이상수;김명철;최학근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.41-51
    • /
    • 2004
  • In this paper, the beam steering dipole phased array antenna systems for IMT-2000 base station have been designed. The designed beam steering dipole phased array antenna systems are constituted by the antenna part and the beam steering control system part. The antenna part is designed by the proposed flat dipole for the broadband characteristics, and the 8${\times}$8 dipole array antenna is constructed by the proposed flat dipole for the directional radiation pattern. Besides the vertical power divider is designed for the vertical power distribution. The beam steering control system part is designed the horizontal power divider for the horizontal power distribution, the 4-bit phase shifters and the driving circuit of phase shifters for the horizontal beam tilting. In order to evaluate a performance of the designed antenna systems, they were fabricated and the radiation characteristics were measured. From the measured results, we found that the horizontal beams were tilted by the each control signals, and the measured radiation characteristics showed good agreement with the design goals.

A Study of 0.5-bit Resolution for True-Time Delay of Phased-Array Antenna System

  • Cha, Junwoo;Park, Youngcheol
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.96-103
    • /
    • 2022
  • This paper presents the analysis of increasing the resolution of True-Time-Delay (TTD) by 0.5-bit for phased-array antenna system which is one of the Multiple-Input and Multiple Output (MIMO) technologies. For the analysis, a 5.5-bit True-Time Delay (TTD) integrated circuit is designed and analyzed in terms of beam steering performance. In order to increase the number of effective bits, the designed 5.5-bit TTD uses Single Pole Triple Throw (SP3T) and Double Pole Triple Throw (DP3T) switches, and this method can minimize the circuit area by inserting the minimum time delay of 0.5-bit. Furthermore, the circuit mostly maintains the performance of the circuit with the fully added bits. The idea of adding 0.5-bit is verified by analyzing the relation between the number of bits and array elements. The 5.5-bit TTD is designed using 0.18 ㎛ RF CMOS process and the estimated size of the designed circuit excluding the pad is 0.57×1.53 mm2. In contrast to the conventional phase shifter which has distortion of scanning angle known as beam squint phenomenon, the proposed TTD circuit has constant time delays for all states across a wide frequency range of 4 - 20 GHz with minimized power consumption. The minimum time delay is designed to have 1.1 ps and 2.2 ps for the 0.5-bit option and the normal 1-bit option, respectively. A simulation for beam patterns where the 10 phased-array antenna is assumed at 10 GHz confirms that the 0.5-bit concept suppresses the pointing error and the relative power error by up to 1.5 degrees and 80 mW, respectively, compared to the conventional 5-bit TTD circuit.

SIW Slot Array Antenna for Dual-Polarization Phased Array System (이중 편파 위상 배열 시스템을 위한 기판 집적 슬롯 배열 안테나)

  • Cho, Dae-Keun;Byun, Jin-Do;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.228-235
    • /
    • 2011
  • In this paper, we propose a $4{\times}8$ SIW(Substrate Integrated Waveguide) slot array antenna for dual-polarized phased array system. The basic part of the array is a subarray comprising an vertical-polarization and horizontal-polarization. A vertical-polarization slotted SIW single-polarization linear array. Using SIW, A vertical polarization linear array consists of 8 uniform longitudinal slots and 4-way SIW feeding network. Using HMSIW, horizontal-polarization linear array consists of 8 slots and 4-way SIW feeding network.

Performance Verification of Active Phased Array Broadband Antenna in Ka-Band (Ka대역 능동위상배열 광대역 안테나 성능 검증 )

  • Youngwan Kim;Jong-Kyun-Back;Hee-Duck Chae;Ji-Han Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper dedcribes the design. verification, and analysis techniques for an advanced phased array antenna. When applying an active phased array antenna to an aircraft or missile, miniaturization of the array antenna and wide-angle beam steering characteristics can be unavoidable antenna design considerations. In particular, the active reflection coefficient characteristics when electronically steering a wide-angle beam is a design parameter that must be minimized in terms of system survival and system performance. As a radiator suitable for broadband characteristics and wide-angle beam steering, this paper designed an array structure using SFN and minimized the active reflection coefficient according to beam steering of up to 40° based on the spherical coordivate system angle. The bandwidth of the radiator was confirmed to be 3GHz based on active reflection in the Ka-band. In addition, the performance of the actually manufactured 8by8 array antenna wsa analyzed by measuring the single pattern of the radiator through a near-field test, mathematically synthesizing it, and predicting the Tx/TRx beam used in the seeker system.

Study on the Tx/Rx Beam Performance of Planar Active Phased Array Antenna for Airborne as using the Near-field Measurement (근접전계 시험을 이용한 항공기용 평면형 능동 위상 배열 안테나 송수신 빔 성능 검증에 관한 연구)

  • Kim, Young-Wan;Lee, Jaemin;Lee, Yuri;Kim, JongPhil;Park, Jong-Kuk;Park, Kyuchul;Kim, Sunju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we described about methods and results to verify the Tx/Rx beam characteristics of a planar active phased array antenna as using a near-field measurement. The near-field system can effectively measure multiple beams and predict the performance degradation due to the partial failure of individual elements. Also, it can accurately predict the EIRP relating to detection performance of the active phased array radar. We briefly described the near-field measurement method to verify the Tx/Rx beam characteristics, and then verified the effectiveness of measurement method by analyzing the measured results.