• Title/Summary/Keyword: Phase-shift pulse modulation

Search Result 47, Processing Time 0.026 seconds

Performance Analysis of the Underwater Acoustic Communication with Low Power Consumption by Sea Trials (해상실험을 통한 저전력 수중음향통신 기법의 성능 분석)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we analysis to consider the performance of PSPM (Phase Shift Pulse-position Modulation), the one of the low power communication technique, in near-field underwater sound channel by sea trial. PSPM is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation) for low power communication in WBAN(Wireless Body Area Network). It is known that the bandwidth efficiency of PSPM is lower than conventional PSK but the power efficiency increases. In this paper, we will analyze the BER performance of PSPM using data acquired from the sea trials. The BER of QPSK was $6.04{\times}10^{-2}$, PSPM was $3.5{\times}10^{-1}$. Also, PSNR of QPSK was 9.37 dB and in case of PSPM was 9.11 dB.

Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor (블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

A Study on the Equalization for Low Power Underwater Acoustic Communication (저전력 수중음향통신을 위한 등화기에 관한 연구)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.169-173
    • /
    • 2012
  • In this paper, we propose an equalizer to minimize the inter-symbol interference when PSSK(Phase Silence Shift Keying) technique is applied to the low power underwater acoustic communication. PSSK is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation), and it was proposed for low power communication. However, it has poor performance due to delay spread of underwater channel. In this paper, we propose a decision feedback equalizer to minimize the error in PSSK receiver. The sea trial was performed to evaluate the performance of the proposed method. In the result, the BER of PSSK was $4.36{\times}10^{-2}$ before the equalizer was applied, but the BER of PSSK was $3.95{\times}10^{-4}$ after the proposed equalizer was applied.

The power regulation of a High-Frequency Induction Heating System with time variance load using a neural fuzzy controller (뉴로퍼지 제어기를 이용한 고주파 유도 가열기의 시변부하에 대한 정전력 제어)

  • 장종승;김승철;임영도
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • This paper describes a phase-shift pulse-width modulation and pulse-frequency modulation series resonant high-frequency inverter using IGBT(Insulated-Gated Bipolar Transistor) for the power control of high-frequency induction heating using neuro-fuzzy, which is practically applied for 20KHz~500KHz induction-heating and melting power supply in industrial fields. The adaptive frequency tracking based phase-shifting PWM(Pulse-Width Modulation) regulation scheme is presented in order to minimize switching losses. The trially-produced breadboards using IGBT are successfully demonstrated and discussed.

  • PDF

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

The Study on FTPM and PSPM of High Frequency Induction-Heating Iron Load (고주파유도가열 철부하의 FTPM 및 PSPM 제어에 관한 연구)

  • 임영도;김두영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.192-199
    • /
    • 2000
  • This paper describes a Phase-Shift Pulse Modulation(PSPM) and Frequency Trad이ng Pulse Modulation(FTPM) s series resonant high-frequency inverter using IGBT for the power control of high-frequency induction heating u using Neuro-Fuzzy, which is practically applied for 20kHz~500kHz induction-heating and melting power supply in i indust껴aJ fields. The adaptive frequency tracking based on the PSPM(phase-shifting pulse modulation) r regulation scherne is presented in or$\tau$ler to l11lmmlZe svvitching losses. The trially-produced breadboards using N Neuro Fuzzy controller are successfully demonstrated cUld cliscussed.

  • PDF

A Study on The Modulation Method for Low Power Communication in Underwater Sensor Network (수중 센서 네트워크에서 저전력 통신을 위한 변조기법의 적용성 연구)

  • Jang, Chul-Hee;Han, Jeong-Woo;Kim, Ki-Man;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.689-696
    • /
    • 2011
  • In this paper, we propose the result of PSSK(Phase Silence Shift Keying) modulation scheme that is mixed PSK(Phase Shift Keying) modulation and PPM(Pulse Position Modulation) method. The performance of underwater communication systems are influenced underwater channel characteristics. In particular, delay spread can make ISI(Inter Symbol Interference) because of reverberation and multi path. It degrade the performance of the communication system. Also underwater sensor networks consider about power efficient due to the particularities of their operating environment. PSSK modulation method transmit two orthogonal symbol and using silence period in a period so it can reduce the power. Increasing the distance of between modulation symbols, to enhance the performance of BER(Bit Error Rate) as well as to improve power efficient. The result of sea trial, QPSK modulation BER is $3.19{\times}10^{-1}$ and PSSK modulation BER is $2.89{\times}10^{-1}$.

Carrier Phase-Shift PWM to Reduce Common-Mode Voltage for Three-Level T-Type NPC Inverters

  • Nguyen, Tuyen D.;Phan, Dzung Quoc;Dao, Dat Ngoc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1197-1207
    • /
    • 2014
  • Common-mode voltage (CMV) causes overvoltage stress to winding insulation and damages AC motors. CMV with high dv/dt causes leakage currents, which create noise problems for equipment installed near the converter. This study proposes a new pulse-width modulation (PWM) strategy for three-level T-type NPC inverters. This strategy substantially eliminates CMV. The principle for selecting suitable triangle carrier signals for the three-level T-type NPC is described. The proposed method can mitigate the peak value of CMV by 50% compared with the phase disposition pulse-width modulation method. Furthermore, the proposed method exhibits better harmonic spectrum and lower root mean square value for the CMV than those of the reduced-CMV method on the basis of the phase opposition disposition PWM scheme with modulation index higher than 0.5. The proposed modulation can easily be implemented using software without any additional hardware modifications. Both simulation and experimental results demonstrate that the proposed carrier phase-shift PWM method has good output waveform performance and reduces CMV.

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

High-Frequency Induction Heating System Design of a PFM and PWM method using Fuzzy Control (퍼지제어기를 이용한 PFM 방식과 PWM방식의 고주파 유도가열기의 설계)

  • 장종승;설재훈;박종오;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.43-49
    • /
    • 1998
  • This paper describes a phase-shift pulse-width modulation and pulse-frequency modulation seriesresonant high-frequency inverter using IGBT for the power control of high-frequency inductionheating using fuzzy, which is practically applied for 2 0- 5~0 0~~ ~in 1d uction-heating and meltingpov~er supply in industrial fields. The adaptive frequency tracking based phase-shifting PWMregillation scheme is presented in order to minimize switching losses. The trially-producedbreadboards using IGBT are succesfully demostrated and discussed.discussed.

  • PDF