• Title/Summary/Keyword: Phase-Shift

Search Result 1,476, Processing Time 1.13 seconds

Receiver design for differential phase-shift keying underwater acoustic communication (차동 위상 천이 변조 방식의 수중음향통신을 위한 수신기 설계)

  • Jeon, Eun-Hye;Kwon, Taek-Ik;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.368-374
    • /
    • 2016
  • This paper presents constructing transmitter and receiver by using a direct sequence spread spectrum techniques to DPSK (Differential Phase-Shift Keying) scheme in underwater acoustic communication. Since DPSK signal can be demodulated if the receiver knows only the phase difference between the adjacent bits, DPSK receiver structure has the advantage of being simplified. In the conventional receiver, two adjacent symbols of transmitted signal before despread are passed to the transition correlator that detects data by comparing maximum correlation outputs. At this time, the error for maximum value of the correlator output may increase because of low SNR (Signal to Noise Ratio) or high Doppler shift frequency according to the underwater channel. In this paper, we propose a method for accurate detection result using the width as well as the magnitude among outputs produced by the correlator. The performances of the proposed method was evaluated by simulation and lake trial data.

2D numerical investigation of twin tunnels-Influence of excavation phase shift

  • Djelloul, Chafia;Karech, Toufik;Demagh, Rafik;Limam, Oualid;Martinez, Juan
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.295-308
    • /
    • 2018
  • The excavation of twin tunnels is a process that destabilizes the ground. The stability of the tunnel lining, the control of ground displacements around the tunnel resulting from each excavation and the interaction between them must be controlled. This paper provides a new approach for replacing the costly 3D analyses with the equivalent 2D analyses that closely reflects the in-situ measurements when excavating twin tunnels. The modeling was performed in two dimensions using the FLAC2D finite difference code. The three-dimensional effect of excavation is taken into account through the deconfinement rate ${\lambda}$ of the soil surrounding the excavation by applying the convergence-confinement method. A comparison between settlements derived by the proposed 2D analysis and the settlements measured in a real project in Algeria shows an acceptable agreement. Also, this paper reports the investigation into the changes in deformations on tunnel linings and surface settlements which may be expected if the twin tunnels of T4 El-Harouche Skikda were constructed with a tunneling machine. Special attention was paid to the influence of the excavation phase shift distance between the two mechanized tunnel faces. It is revealed that the ground movements and the lining deformations during tunnel excavation depend on the distance between the tunnels' axis and the excavation phase shift.

A Study on The Modulation Method for Low Power Communication in Underwater Sensor Network (수중 센서 네트워크에서 저전력 통신을 위한 변조기법의 적용성 연구)

  • Jang, Chul-Hee;Han, Jeong-Woo;Kim, Ki-Man;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.689-696
    • /
    • 2011
  • In this paper, we propose the result of PSSK(Phase Silence Shift Keying) modulation scheme that is mixed PSK(Phase Shift Keying) modulation and PPM(Pulse Position Modulation) method. The performance of underwater communication systems are influenced underwater channel characteristics. In particular, delay spread can make ISI(Inter Symbol Interference) because of reverberation and multi path. It degrade the performance of the communication system. Also underwater sensor networks consider about power efficient due to the particularities of their operating environment. PSSK modulation method transmit two orthogonal symbol and using silence period in a period so it can reduce the power. Increasing the distance of between modulation symbols, to enhance the performance of BER(Bit Error Rate) as well as to improve power efficient. The result of sea trial, QPSK modulation BER is $3.19{\times}10^{-1}$ and PSSK modulation BER is $2.89{\times}10^{-1}$.

Phase-Shift Full-Bridge DC-DC Converter using the One-Chip Micom (단일칩 마이컴을 이용한 위상변위 방식 풀브리지 직류-직류 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.517-527
    • /
    • 2021
  • This paper presents the phase-shift full-bridge DC-DC converter using the one-chip micom. The proposed converter primary is the full-bridge power topology that operates with the unipolar pulse-width modulation (PWM) by the phase-shift method, and the secondary is the full-bridge full-wave rectifier composed of four diodes. The control of proposed converter is performed by the one-chip micom and its MOSFET switches are driven by the bootstrap circuit. Thus the total system of proposed converter is simple. The proposed converter achieves high-efficiency using the resonant circuit and blocking capacitor. In this paper, first, the power-circuit operation of proposed converter is explained according to each operation mode. And the power-circuit design method of proposed converter is shown, and the software control algorithm on the micom and the feedback and switch drive circuits operating the proposed converter are described, briefly. Then, the operation characteristics of proposed converter are validated through the experimental results of a designed and implemented prototype converter by the shown design and implementation method in this paper. The highest efficiency in the results was about 92%.

A method of frame synchronization of binary phase shift keying signal in underwater acoustic communications (수중 음향통신에서 binary phase shift keying신호의 프레임동기 방법)

  • YANG, Gyeong-pil;KIM, Wan-Jin;DO, Dae-Won;KO, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.159-165
    • /
    • 2022
  • In this paper, a frame synchronization structure for the Binary Phase Shift Keying (BPSK) modulation method in underwater acoustic communication was proposed. The proposed frame synchronization structure is largely divided into two. First, the approximate position and frequency offset of the frame are obtained by non-coherent correlation and sliding Fast Fourier Transform (FFT) method. Second, after compensating for the frequency error to the received signal, the exact position of the frame is obtained by coherent correlation method. Maritime experiments were conducted to confirm the performance of the 2-STEP frame synchronization structure. It was showed that the limitations of the non-coherent correlation and sliding FFT method can be verified when the power of the received signal was greatly reduced due to the channel characteristics. As a result, stable frame synchronization could be obtained by compensating for the frequency error and then using the coherent correlation method.

BER Performance Analysis of Hierarchical-MPSK Using Phase Parameters (위상 파라미터 도출을 통한 H-MPSK의 BER 성능 분석)

  • Lee, Won-Joon;Park, Sang-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.375-380
    • /
    • 2009
  • Bit error rate(BER) performance of each bit for hierarchical M-ary phase shift keying(H-MPSK) modulation scheme is changed according to the phase parameters. Thus, a method to find the phase parameters appropriate to the requests of the system is needed. In this paper, we propose a method to obtain the phase parameters from an approximate approach of BER for H-MPSK and verify a validity of the proposed method through the previously provided expression for analyzing an exact error probability of H-MPSK.

High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers (헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.172-178
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state -of-the-art reaches the region of sub-nanometers. So far, the demand has been met by increasing the clock speed that drives the electronics involved fur the phase measurement of the Doppler shift, but its further advance is being hampered by the technological limit of modem electronics. To cope with the problem, in this investigation, we propose a new scheme of phase -measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with a stable reference signal generated from a special phase- locked-loop. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special form of frequency up-down counting technique is combined with the super-heterodyning. This allows performing required phase unwrapping simply by using programmable digital gates without 2n ambiguities up to the maximum velocity guaranteed by the original beat frequency.

Polarization Phase-shifting Technique in Shearographic System with a Wollaston Prism

  • Kim, Soo-Gil
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.122-126
    • /
    • 2004
  • The method to obtain four speckle patterns with relative phase shift of ${\pi}/2$ by passive devices such as two waveplates and a linear polarizer, awl to calculate the phase at each point of the speckle pattern in shearography with a Wollaston prism is presented, and the feasibility of the proposed method is theoretically demonstrated by Jones vector.

Measurement of electron density of atmospheric pressure Ne plasma jet by laser heterodyne Interferometer with voltage

  • Lim, Jun Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.140.1-140.1
    • /
    • 2015
  • Currently, As Plasma application is expanded to the industrial and medical industrial, Low temperature plasma characteristics became important. Especially in Medical industrial, Low temperature plasma directly adapted to human skin, so their plasma parameter is important. One of the plasma parameters is electron density, some kinds of method to measuring electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods is expensive to composed of experiment system. Heterodyne interferometer system is cheap and simple to setting up, So we tried to measuring electron density by Laser heterodyne interferometer. To measuring electron density at atmospheric pressure, we need to obtain the phase shift signal. And we use a heterodyne interferometer. Our guiding laser is Helium-Neon laser which generated 632 nm laser. We set up to chopper which can make a laser signal like a pulse. Chopper can make a 4 kHz chopping. We used Needle jet as Ne plasma sources. Interference pattern is changed by refractive index of electron density. As this refractive index change, phase shift was occurred. Electron density is changed from Townsend discharge's electron bombardment, so we observed phenomena and calculated phase shift. Finally, we measured electron density by refractive index and electron density relationship. The calculated electron density value is approximately 1015~1016 cm-3. And we studied electron density value with voltage.

  • PDF

Characteristic of Hydrogen-oxygen Mixed Gas Power Conversion System (혼합수소발생기용 전력변환장치의 특성)

  • Mun, Sang-Pil;Lee, Hae-Su;Nakaoka, Mutsuo;Jeong, Jang-Geun;Kim, Chang-Il;Jo, Gil-Je;Kim, Sang-Don
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.323-326
    • /
    • 2007
  • In this paper, the basic experiment, electrolytic cell design and basic manufacturing have been made to interpret the characteristics of Hydrogen-Oxygen-Gas-Generator. As for the detailed matters, the data research on basic technology on Hydrogen-Oxygen-Gas and analysis on characteristics of Hydrogen-Oxygen-Gas from basic experiment. Also the experiment of characteristics and comparative evaluation between constant current source using SCR converter from existing method and constant current source using new phase shift PWM control method converter. As results when it has injected constant DC current, we has compared Gas quantities by variable ripple frequencies using phase shift PWM control method converter. Therefore, in linear region, it has not different Gas quantities by constant DC current and by phase shift PWM control method converter. Also, it has increased Gas quantities wilder linear region when put ripple frequency at saturation region. Through, Gas quantities and input rower, it has acquired higher input power per Gas quantities at put pulse current. Therefore, when designing converter or inverter for electrolysis, which has ripple current.

  • PDF