• Title/Summary/Keyword: Phase variation

Search Result 2,042, Processing Time 0.03 seconds

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

Torque Control Scheme of Switched Reluctance Motor using Neural Network (신경회로망을 이용한 SRM의 토오크 제어)

  • 정연석;이장선;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.171-174
    • /
    • 1999
  • The torque of SRM is developed by phase currents and inductance variation. Phase currents and inductance variation. Phase current is often the controlled variable in electrical motor drives, so it seems natural to use closed loop current controllers. However, the highly nonlinear nature of switched reluctance motors makes optimisation of closed loop current controlled difficult because of saturation effect in magnetic circuit. Therefore, torque generation region is nonlinearly varied according to phase current and rotor position. This paper describes the torque control scheme with neural network that can control varied with load torque. The torque control is simulated by PSIM.

  • PDF

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Index-Coupled DFB Laser (양 단면 반사율과 위상 조정 영역의 위상이 다중 영역 Index-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Ryu, Jong-In;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.548-555
    • /
    • 2006
  • We investigate the effect of the reflectivity of both facets and the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection index-coupled (IC) DFB lasers composed of two index-coupled DFB sections and a phase tuning section between them in terms of yield. In the case of weak coupling strength, as the reflectivity of both facets increases, the effect of reflected fields from both facets and the other DFB section on the mode characteristics of one DFB section increases. Thus the number of mode hoping increases and yield decreases for the variation of phases of both facets. In the case of strong coupling strength, as the reflectivity of both facets increases, the spatial hole burning effect increases, so that the yield decreases. The maximum yield and the range of the phase of a phase tuning section with yield more than 40% decrease as the facet reflectivity increases irrespective of coupling strength. As the coupling strength increases, the variation of yield for the variation of the phase of a phase tuning section increases and the variation of the phase of a phase tuning section with the maximum yield for the variation of the reflectivity of both facets decreases. The yield characteristics of the cases with the coupling strengths of 2 and 3 are better than those with the coupling strengths of 1.2 and 4.

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

The Analysis of Amplitude and Phase Image for Acoustic Microscope Using Quadrature Technique (쿼드러춰 방식에 의한 초음파현미경의 진폭과 위상영상 분석)

  • Kim, Hyun;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.55-61
    • /
    • 1999
  • In this study, we have constructed the acoustic microscope using quadrature technique and analyzed the relative variation of image intensity and the quality of image by reconstructing the amplitude and phase image for surface defects with tiny hight variation. In this experiment, we have constructed the scanning acoustic microscope using the focused transducer with 3㎒ center frequency and the quadrature detector. And we have fabricated aluminum samples with round defects whose depth is different and reconstructed the amplitude and phase images for the samples. One sample has round defects with 2㎜ diameter and 100㎛ depth and the other has round defects with 4㎜ diameter and 5㎜ depth. In the result of line scanning for the sample with 100㎛ round defects, it has been shown that the variation rate of amplitude image intensity is 7% and the variation rate of phase image intensity is 89%. The phase image has better contrast than amplitude image for the sample. In contrast to this, the amplitude image has better contrast than phase image for the sample with 5㎜ depth's defects. Accordingly there is big difference between amplitude image and phase image for depth variation of defects whose boundary is 1 wavelength. Consequently the acoustic microscope using quadrature detector can be evaluated efficiently more than using envelope detector, for detecting defects which have height variation less than 1 wavelength. And also the phase image and the amplitude image can be used for detecting defects of tiny height variation with complimentary relation.

  • PDF

Three-Phase Line-Interactive Dynamic Voltage Restorer with a New Sag Detection Algorithm

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.203-209
    • /
    • 2010
  • This paper describes the development of a three-phase line-interactive DVR with a new sag detection algorithm. The developed detection algorithm has a hybrid structure composed of an instantaneous detector and RMS-variation detectors. The source voltage passes through the sliding-window DFT and RMS calculator, and the instantaneous sag detector. If an instantaneous sag is detected, the RMS variation detector-1 is selected to calculate the RMS variation. The RMS variation detector-2 is selected when the instantaneous sag occurs under the operation of the RMS variation detector-1. The feasibility of the proposed algorithm is verified through computer simulations and experimental work with a prototype of a line-interactive DVR with a 3kVA rating. The line-interactive DVR with the proposed algorithm can compensate for an input voltage sag or an interruption within a 2ms delay. The developed DVR can effectively compensate for a voltage sag or interruption in sensitive loads, such as computers, communications equipment, and automation equipment.

A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators

  • Chung, Il-Yop;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2007
  • This paper proposes a new islanding detection method for inverter-interfaced distributed generators (DG). To detect islanding conditions, this paper calculates the phase angle variation of the system voltage by using the phase-locked loop (PLL) in the inverter controllers. Because almost all inverter systems are equipped with the PLL, the implementation of this method is fairly simple and economical for inverter-interfaced DGs. The detection time can also be shortened by reducing communication delay between the relays and the DGs. The proposed method is based on the fact that islanding conditions result in the frequency and voltage variation of the islanded area. The variation depends on the amount of power mismatch. To improve the accuracy of the detection algorithm, this paper injects small low-frequency reactive power mismatch to the output power of DG.

The Optimum Design of The Permanent Starting Device used in The Single-Phase SRM (단상 SRM에 사용되는 영구자석 기동장치의 최적 설계 I)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Jong-Han;Lee, Min-Myung;Kim, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1279-1281
    • /
    • 2005
  • Generally a single-phase SRM(switched reluctance motor) has several stator and rotor poles but these are excited by one regulated current at the same time. It has only one inductance variation. It means that the positive torque is only generated in the positive slope of the inductance variation. The single-phase SRM can not be started by itself. The single-phase SRM can be started by itself if the rotor is placed in the positive slope of the inductance variation. Then, the starting device is required to place the rotor in the starting position before start. On this paper, the equation of the force requisite for the starting device is derived using by the frictional force of the rotor

  • PDF

A Study on the Uniform Metal-Droplet Deposition Using Laser (레이저를 이용한 균일 금속액적 적층에 관한 연구)

  • 유성복;김용욱;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.667-670
    • /
    • 2002
  • Uniform metal-droplet deposition using laser is analyzed. Using the variation principle and modeling the semi-solid phase as a non-Netwonian slurry, this model can greatly save the computational expenses that conventional numerical procedures have suffered from. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of the falling distance and time.

  • PDF

Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition (전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어)

  • Ahn, Chang-Heon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.