• Title/Summary/Keyword: Phase transfer

Search Result 2,001, Processing Time 0.027 seconds

Thermodynamic Properties of R-32(Difluoromethane) and Initial Evaluation of Thermodynamic Perfomance as A R-22 Alternative Refrigerant (대체냉매 R-32(Difluoromethane)의 열역학적 물성과 R-22 대체냉매로서 열역학적 성능의 초기 평가)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.141-155
    • /
    • 1993
  • Thermodynamic properties of R-32 are calculated and its refrigeration performance is evaluated for the purpose the feasibility study of replacing R-22 with R-32. (1) Refrigeration effect of R-32 is superior to that of R-22 because heat of evaporation of R 32 is about 50% higher than that of R-22. However, COP of R-32 system is 10-30% lower than that of R-22 system. It is mainly attributed to the vapor pressore of R-32 being about 62% higher than R-22. (2) Since the pressure ratio and the specific heat ratio of R-32 system is higher than those of R -22, compressor discharging temperature rises as high as to $130-150^{\circ}C$. It may cause mechanical failure of compressor due to the breakdown of lubricant. Compressor should be improved to lower the temperature if R-32 is to replace R-22. (3) Averaged two-phase heat transfer coefficient of R-32 is about 10-20% higher than that of R-22. It may assume better heat exchanger effectiveness but not guarantee the better COP of R-32 system than R-22. (4) The high vapor pressure is the first reason to drop R-32 out of the line of R-22 alternative refrigerant. So, refrigerant mixtures based on R-32 are recommended to adjust the vapor pressure first and keep superior volumetric capacity of R-32.

  • PDF

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • Kim, Yeong-Hun;Go, Yong-Min;Gu, Bon-Gi;Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

A CDR using 1/4-rate Clock based on Dual-Interpolator (1/4-rate 클록을 이용한 이중 보간 방식 기반의 CDR)

  • Ahn, Hee-Sun;Park, Won-Ki;Lee, Sung-Chul;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.68-75
    • /
    • 2009
  • In this paper, an efficient proposed CDR(Clock and Data Recovery Circuits) using 1/4-rate clock based on dual-interpolator is proposed. The CDR is aimed to overcome problems that using multi-phase clock to decrease the clock generator frequency causes side effects such as the increased power dissipation and hardware complexity, especially when the number of channels is high. To solve these problems, each recovery part generates needed additional clocks using only inverters, but not flip-flops while maintaining the number of clocks supplied from a clock generator the same as 1/2-rate clock method. Thus, the reduction of a clock generator frequency using 1/4-rate clocking helps relax the speed limitation and power dissipation when higher data rate transfer is demanded.

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF

An Analysis of Characteristics for the Non-catalytic Esterification of Palm Fatty Acid Distillate (PFAD) (팜지방산 디스틸레이트의 무촉매 에스테르화 반응특성 연구)

  • Hong, Seok Won;Cho, Hyun Jun;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.395-401
    • /
    • 2014
  • In this work, the reaction characteristics for the non-catalytic esterification of palm fatty acid distillate were analyzed. The esterification reaction was assumed as the pseudo homogeneous $2^{nd}$ order reversible reaction and 'reaction effectiveness factor (${\eta}$)' was used to take accounts into evaporation and reaction of water and methanol, which take place simultaneously in the liquid phase. The nonlinear programming was used to derive appropriate kinetic parameters, the reaction rate constant and mass transfer coefficient, minimizing the error between experimental data and the numerical values. Based on these parameters, the apparent activation energy was calculated to be 43.98 kJ/mol.

Chemical Vapor Deposition of Tungsten by Silane Reduction (사일린 환원반응에 의한 텅스텐 박막의 화학증착)

  • Hwang, Sung-Bo;Choi, Kyeong-Keun;Rhee Shi-Woo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.113-123
    • /
    • 1990
  • Tungsten film was deposited on the single crystal silicon wafer in a low pressure chemical vapor deposition reactor from silane and tungsten hexafluoride in the temperature range of $250-400^{\circ}C$ Deposition rate was found to be determined by the mass transfer rate of reactants from the gas phase to the safter surface. It was found out that tungsten films deposited contained about 3 atomic $\%$ of silicon and that the crystallinity and the grain size increased as the deposition temperature was increased. The resistivity of the film was measured to be in the range of $7~25{\mu}{\Omega}-cm$ and decreased with increasing deposition temperature. The adhesion of the tungsten film on a silicon surface was measured by the tape peel off test and it was improved with increasing deposition temperature. From the analysis of the gas composition, the reaction pathway to form $SiF_{4}$ and $H_{2}$ was found to be more favorable than HF formation.

  • PDF

A Numerical Study on the Discharging Performance of a Packing Module in a Thermal Storage Tank (축열조 내 패킹 모듈의 방열 성능에 대한 수치해석)

  • Lee, Yong Tae;Chung, Jae Dong;Park, Hyoung Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.625-631
    • /
    • 2015
  • In this study, a numerical analysis on the discharging performance of a thermal storage tank completely filled with packing modules is investigated. The enthalpy-porosity method is adopted to analyze phase change phenomenon. Using this method, the melting process of a packing module in the thermal storage tank was studied as the HTF (heat transfer fluid) flows down from the top of the tank at the discharging mode. There are some design factors such as the module arrangement and the number of modules, but this study focuses on the effects of varying the flow rate of the HTF on the outlet temperature of the HTF, molten fraction, and thermal storage density. As the flow rate increases, the outlet temperature of the HTF gets higher and the total melting time of the PCM decreases. Additionally, the thermal storage density is increased so that it reaches about 93% for the desired value.

GAP JUNCTION, A BIOMARKER FOR CANCER AND CHEMOPREVENTION: PREVENTIVE EFFECT OF EPICATECHIN AND GINSENOSIDE $Rb_$ ON THE INHIBITION OF GAP JUNCTIONAL INTERCULLULAR COMMUNICATION BY TPA AND $H_2O_2$

  • Kang, Kyung-Sun;Lee, Yong-Soom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05b
    • /
    • pp.59-72
    • /
    • 2002
  • The anticarcinogenic effects of epicatechin(EC) and ginsenoside Rb2(Rb2), which are major components of green tea and Korea ginsen, respectively, were investigated using a model system of gap junctional intercellular communication (GJIC) in WB-F344 rat liver epithelial cells. 12-O-Tetradecanoylphorbol-13-accetate (TPA) and hydrogen preoxide, known as cancer promoters, inhibited GJIC in the epithelial cells as determined by the scrape loading/dye transfer assay, fluorescence redistribution assay after photobleaching, and immunofluorescent staining of connexin 43 using a laser confocal microscope. The inhibition of GJIC by TPA and H2O2 was prevented with treatment of Rb2 or Ec. The effect of EC on GJIC was stronger in TPA-treated cells than in H2O2-treated cells, while the effect of Rb2 was opoosite to that of EC. EC, at the concentration of 27.8$\mu$g/ml, prevented the TPA-induced GJIC inhibition by about 60%. Rb2, at the concentration of 277$\mu$g/ml, recovered the H2O2-induced GJIC inhibition by about 60%. These results suggest that Rb2 and EC may prevent human cancers by preventing the down-regulation of GJIC during the cancer promotion phase and that the anticancer effect of green tea and Korea ginseng may come from the major respective conponents, EC and Rb2.

  • PDF