DOI QR코드

DOI QR Code

A Numerical Study on the Discharging Performance of a Packing Module in a Thermal Storage Tank

축열조 내 패킹 모듈의 방열 성능에 대한 수치해석

  • Received : 2015.03.17
  • Accepted : 2015.05.03
  • Published : 2015.07.01

Abstract

In this study, a numerical analysis on the discharging performance of a thermal storage tank completely filled with packing modules is investigated. The enthalpy-porosity method is adopted to analyze phase change phenomenon. Using this method, the melting process of a packing module in the thermal storage tank was studied as the HTF (heat transfer fluid) flows down from the top of the tank at the discharging mode. There are some design factors such as the module arrangement and the number of modules, but this study focuses on the effects of varying the flow rate of the HTF on the outlet temperature of the HTF, molten fraction, and thermal storage density. As the flow rate increases, the outlet temperature of the HTF gets higher and the total melting time of the PCM decreases. Additionally, the thermal storage density is increased so that it reaches about 93% for the desired value.

이번 연구는 패킹 모듈로 채워진 축열조의 방열 성능을 수치해석 하였다. 해석에는 PCM의 상변화 현상을 계산하기 위해 엔탈피-공극률 방법을 이용하였다. 이 방법을 통해서 방열 시 축열조 상부로부터 열전달유체가 흐를 때 모듈에서의 녹는 현상을 계산하였다. 축열조 디자인에 모듈 배치, 모듈 수 등의 다양한 인자가 있지만, 본 해석에서는 유량의 변화에 따라 나타나는 축열조 출구온도, 전체 PCM의 시간에 따른 녹은 양 및 축열밀도를 확인하였다. 결과적으로 유량이 증가할수록 출구온도가 높게 형성되었으며, 전체 PCM이 녹는데 필요한 시간이 짧아지고 축열 밀도 역시 증가하여 목표치의 93% 수준에 도달하는 것으로 나타났다.

Keywords

References

  1. Brent, A. D., Voller, V. R. and Reid, K. J., 1988, "The Enthalpy-porosity Technique for Modeling Convection-diffusion Phase Change: Application to the Modeling of a Pure Metal," Numerical Heat Transfer, Vol. 13, No. 3, pp. 297-318.
  2. Chung, J. D., Lee, J. S. and Yoo, H. S., 1997, "Thermal Instability during the Melting Process in an Isothermally Heated Horizontal Cylinder," Int. J. Heat Mass Transfer, Vol. 40, No. 16, pp. 3899-3907. https://doi.org/10.1016/S0017-9310(97)00037-9
  3. Bedecarrats, J. P., Strub, F., Falcon, B. and Dumas, J. P., 1996, "Phase-change Thermal Energy Storage Using Spherical Capsules: Performance of a Test Plant," Int. J. Refrig, Vol. 19, No. 3, pp. 187-196. https://doi.org/10.1016/0140-7007(95)00080-1
  4. Lee, S. R., Lee, K. H., Choi, B. Y. and Han, S. H., 2001, "Modelling of Thermal Discharge Performance for Ice-on-coil Type Ice-Storage Tank," Proceedings of the KSME 2001 Annual Meeting, pp 280-285.
  5. Lee, Y. T., Hong, S. W. and Chung, J. D., 2014, "Effects of Capsule Conduction and Capsule Outside Convection on the Thermal Storage Performance of Encapsulated Thermal Storage Tanks," Solar Energy, Vol. 110, pp. 56-63. https://doi.org/10.1016/j.solener.2014.08.034
  6. Hong, S. W., Lee, Y. T. and Chung, J. D., 2015, "Restrictions on the Analytic Approach of Unconstrained Melting Inside a Spherical Capsule," Journal of Mechanical Science and Technology, submitted.
  7. Xia, L., Zhang, P. and Wang, R. Z., 2010, "Numerical Heat Transfer Analysis of the Packed Bed Latent Heat Storage System Based on an Effective Packed Bed Model," Energy, Vol.35, pp. 2022-2032. https://doi.org/10.1016/j.energy.2010.01.018
  8. Wu, S., Fang, G. and Chen, Z., 2012, "Discharging Characteristics Modeling of Cool Thermal Energy Storage System with Coil Pipes Using n-tetradecane as Phase Change Material," Applied Thermal Engineering, Vol. 37, pp. 336-343. https://doi.org/10.1016/j.applthermaleng.2011.11.046

Cited by

  1. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions vol.10, pp.12, 2017, https://doi.org/10.3390/en10122020