• Title/Summary/Keyword: Phase stability

Search Result 1,985, Processing Time 0.031 seconds

Design of 22.9kV High Temperature Superconducting Cable Considering AC losses and Stability (교류손실 및 안정성을 고려한 22.9kV 초전도 케이블 설계)

  • Jang, H.M.;Lee, C.Y.;Kim, C.D.;Sim, K.D.;Cho, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1210-1212
    • /
    • 2005
  • High temperature superconducting(HTS) power cable system consists of HTS cable, termination and cryogenic system. And the HTS cable consists of the former, HTS phase conductor, electric insulation, HTS shield and cryostat. Taking the advantage of HTS shield, the cold dielectric has been adopted. The phase conductor and the shield have been designed to minimize the AC loss below 1W/m/phase. The former has been designed to transport the fault current of 25kA, at fault condition. This paper describes the design process of 22.9kV HTS cable considering AC losses at normal state and the stability at fault condition.

  • PDF

Phase Stability of Injection-Locked Beam of Semiconductor Lasers (Injection-Locking된 반도체 레이저 광파의 위상 안전성)

  • 권진혁;김도훈
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.191-197
    • /
    • 1990
  • An experiment on the phase stability of injection-locked beam is done by using AlGaAs semiconductor lasers. The coherence of two beams from the master and slave lasers is measured by interference between the beams in the Twymann-Green interferometer. The phase change of the output beam of the slave laser as a function of the driving current is measured in the Mach-Zehnder interferometer consisted of the master and slave lasers and a value of 2.5radlmA is obtainccl.

  • PDF

Robust Digital Nonlinear Friction Compensation - Theory (견실한 비선형 마찰보상 이산제어 - 이론)

  • 강민식;김창제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF

Common-path phase microscopy for lives cell imaging (살아있는 세포 영상획득을 위한 common-path phase microscopy)

  • Lee, Ji-Yong;Lee, Seung-Rak;Yang, W.Z.;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.273-274
    • /
    • 2008
  • We present a quantitative phase microscopy for live cells. This method uses the principles of common path inteferometry and single shot phase image. This system has the ability to measure live cells quantitatively with subnanometer path length stability and millisecond scale aquisition time.

  • PDF

A Study on the Phase-looked Dielectric Resonator Oscillator using Bias Tuning (바이어스 동조를 이용한 위상 고정 유전체 공진 발진기에 관한 연구)

  • 류근관;이두한;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1982-1990
    • /
    • 1994
  • We implemented a PLDRO(Phase Locked Dielectric Resonator Oscillator) using the concept of the feedback property of PLL(Phase Locked Loop) for Ku-band(10.95-11.70 GHz). The conventional approaches to a PLDRO design use varactor diode tuning method.. But in theis paper, the PLDRO has the advantage of the frequency sensitivity to changes in the supple voltage of the oscillating device without the frequency-variable part by varactor diode voltage-control. and uses a SPD(Sampling Phase Detector) for phase-comparision. The PLDRO is composed of the DRO phase-locked to the reference signal of UHF band by using a SPD for high frequency stability and can be available for European FSS(Fixed Satellite Service) at 10.00GHz. The PLDRO generates the output power of 8.67 dBm at 10.00 GHz and has a phase noise of -81 dBc/Hz at 10 kHz offset from carrier. The hamonic and spurious characteristics have -42.33 dBc and -65dBc respectively. This PLDRO has much better frequency stability, lower phase noise, and more economical effect for a satellite system than conventional DRO.

  • PDF

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite (다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향)

  • Sohyun Kang;Seungmin Lee;Jun Hong Noh
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.344-351
    • /
    • 2023
  • Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.

Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries (Al2O3/PVdF_HFP 세라믹코팅층의 미세기공구조가 리튬이차전지용 복합분리막의 열 안정성 및 전기화학특성에 미치는 영향)

  • Jeong, Hyun-Seok;Kim, Kyu-Chul;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.324-328
    • /
    • 2009
  • The internal short-circuit between cathodes and anodes has been known to be a critical concern for the safety failures of lithium-ion batteries, which is strongly influenced by the thermal stability of separators. In this study, to effectively suppress the internal short-circuit failures, we developed a new composite separator with the improved thermal stability compared to conventional polyolefin-based separators. The composite separators were prepared by introducing a ceramic coating layer ($Al_2O_3$/PVdF-HFP) onto both sides of a polyethylene (PE) separator. The microporous structure of ceramic coating layers is determined by controlling the phase inversion of coating solutions and becomes more developed with the increase of nonsolvent (water) content. This structural change of ceramic coating layers was observed to greatly affect the thermal stability as well as the electrochemical performance of composite separators, which was systematically discussed in terms of phase inversion.

A study on the improvement of PLL system for three phase induction motor speed control (삼상유도전동기의 속도제어를 위한 PLL System의 개선에 관한 연구)

  • 정연택;이성용
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.832-837
    • /
    • 1981
  • The study of PLL System to control the Speed of three phase induction motor is described. By solving some problems of conventional PLL system, the system has ability to be easily locked under any conditions. In order to study response velocity and stability of system, this paper presents different filter types and methods of determination of time constant.

  • PDF

Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow (공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.19-33
    • /
    • 2016
  • Stability analysis based on the limit equilibrium method combined with the result of infiltration analysis is commonly used to evaluate the effect of rainfall infiltration on the slope stability. Soil is a three-phase mixture composed of solid particle, water and air. Therefore, a fully coupled mixture theories of stress-deformation behavior and the flow of water and air should be used to accurately analyze the process of rainfall infiltration through soil slope. The purpose of this study is to study the effect of interaction of air and water flow on the mechanical stability of slope. In this study, stability analyses based on the coupled hydro-mechanical model of three-phases were conducted for slope of weathered granite soil widespread in Korea. During the process of hydro-mechanical analysis strength reduction technique was applied to evaluate the effect of rainfall infiltration on the slope stability. The results showed an increase of air pressure during infiltration because rain water continuously displaced the air in the unsaturated zone. Such water-air interaction in the pore space of soil affects the stress-deformation behavior of slope. Therefore, the results from the three-phase model showed different behavior from the solid-water model that ignores the transport effect of air in the pores.