• Title/Summary/Keyword: Phase measurement

Search Result 2,495, Processing Time 0.029 seconds

A Study on the Determination of Displacement by Applied Laser Measurement (레이저응용계측에 의한 변위 정량화에 관한 연구)

  • 김경석;홍진후;강기수;최지은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • This study discusses a non-contact optical technique, phase shifting electronic speckle pattern interferometry, that is well suited for a deformation measurement. However, the phase shifting method has difficulties for determinating a deformation quantitatively beacuse of the characteristics of arctan function. In order to solve this problem, phase unwrapping methods has been studied during the last few years. In this study, using phase unwrapping based on line by line scanning phase shifted fringe patterns are studied to determinate a deformation quantitatively. Also least square fitting method is applied to reduce noise and improve image resolution.

  • PDF

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

An experiment for comparison of an imaging measurement technique for a water spray with a phase-Doppler measurement technique (PDPA와 화상처리법(PMAS)의 비교를 위한 분무 측정 실험)

  • Jurng, J.;Lee, G.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • Two measurement techniques of droplet sizing, an imaging technique(PMAS) and a phase-Doppler measurement technique (PDPA), have been compared using a water spray from a pressurized-type swirl nozzle. The result showed that SMD measured by PDPA was larger than that measured by PMAS by about 40 %. Such discrepancy of SMD could be explained by the fact that the light signal intensity used by PDPA can be biased towards larger particles. On the other hand there could be lower opportunity to capture the images of the large particles with PMAS, since the large particles could be out of sight due to their high speed.

  • PDF

A Study on the Measurement of the Winding Resistance Influences the Efficiency Evaluation of 3phase Induction Motors (삼상유도전동기 권선저항 측정이 효율 산출에 미치는 영향에 관한 연구)

  • Kang, Byung-Guk;Kim, Kwang-Min;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • 3phase induction motor consumes 40% of national electric power. so It is one of the most important electric device for the national power policy. The efficiency measurement is carried out by IEC standards. After the temperature rise test, It's difficult to measure the winding resistance immediately. because of inertia and power cut-off time. Therefore, IEC standards suggest the measurement time. But during the measurement time, the winding temperature cools down. It causes the value of winding resistance is variable. Several conditions which possibly occurred by the measurement time of IEC 60034-1 are suggested. and The efficiency evaluation of 3phase induction motors is carried out by IEC 60034-2-1 with the several conditions. As the results, we find out the winding resistance rapidly goes down within 15 sec. so It proves that the winding resistance should be measured within 15 sec. for the efficiency evaluating of 3phase induction motor.

Development of a Sensor Chip for Phasor Measurement of Multichannel Single Tone Signals (다채널 단일톤 위상 측정칩 개발)

  • Kim, Byoung-Il;Hong, Keun-Pyo;Hwang, Jin-Yong;Chang, Tae-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.497-500
    • /
    • 2005
  • This paper presents a design of a hybrid sensor chip which integrates an A/D converter module and a phase measurement module for measuring power line phase. Recursive sliding DFT based phase measurement module is designed using time shared multiplier which can reduce the size of SoC implementation. A/D converter is based on the sigma delta modulation in order to minimize the implementation space of the analog part and designed to obtain 8-bit resolution. Computer simulations and FPGA implementation are performed to verify hybrid sensor chip design. The hybrid sensor chip for 4-channel power line phase measurement is fabricated by using 0.35 micrometer CMOS process.

  • PDF

Power-line phase measurement algorithm based on the sliding-DFT (Sliding-DFT에 기반한 전력선 위상 측정 기법)

  • 안병선;김병일;장태규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2192-2195
    • /
    • 2003
  • This parer proposes a power-line phase measurement algorithm which is based on the recursive implementation of sliding-DFT. Usage of the single DFT coefficient in the conventional sliding-DFT based power-line phase measurement brings a significant error propagation when implemented in hardware with finite word-length arithmetic operations. The proposed algorithm utilizes all the N-point DFT coefficients in the recursion. Performance degradation caused by the finite word- length implementation of the algorithm is analyzed and verified with computer simulations. The robustness of the proposed phase measurement algorithm against the erroneous implementation is also confirmed by the performance analysis and simulation.

  • PDF

A Development of Displacement Measurement System using Ultrasonic Sensor (초음파 센서를 이용한 변위 측정 시스템 개발)

  • Kim, Jung-Sup;Kim, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.142-145
    • /
    • 1995
  • This paper is to develop a measurement system of the displacement distance using ultrasonic sensors. Two 400KHz ultrasonic sensors are used for realizing the measurement system, such as one sensor transmits the sine wave and the other sensor receives this wave. The displacement is measured by the phase difference between transmitting and receiving signals. A phase defecter transforms phase difference to voltage. Because the output voltage pattern has nonlinear characteristics, the relations of the voltage and the distance are learned by a neural network. As the results of teaming, the efficiency of measurement system is improved. This system can measure the displacement distance at the accuracy of 1 micrometer level.

  • PDF

FPGA Implementation of Recursive DFT based Phase Measurement Algorithm (DFT 연산 FPGA 모들에 기반한 위상 측정 앨고리즘의 구현)

  • Ahn Byoung-Sun;Kim Byoung-Il;Chang Tae-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.191-193
    • /
    • 2005
  • This paper proposes a phase measurement algorithm which is based on the recursive implementation of sliding-DFT. The proposed algorithm is designed to have a robust behavior against the erroneous factors of frequency drift, additive noise, and twiddle factor approximation. Four channel power-line phase measurement system is also designed and implemented based on the time-multiplexed sharing architecture of the proposed algorithm. The proposed algorithm's features of phase measurement accuracy and its robustness against the finite wordlength effects can provide a significant impact especially for the ASIC or microprocessor based embedded system applications where the enhanced processing speed and implementation simplicity are crucial design considerations.

Development of the Ultrasonic Method for Two-Phase Mixture Level Measurement

  • Lee, Dong-Won;No, Hee-Cheon;Song, Chul-Wha;Jeong, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.124-124
    • /
    • 1999
  • An ultrasonic method is developed for the measurement of the two-phase mixture level in the reactor vessel or steam generator. The ultrasonic method is selected among the several non¬nuelear two-phase mixture level measurement methods through two steps of selection procedure. A commercial ultrasonic level measurement method is modified for application into the high temperature, pressure, and other conditions. The calculation method of the ultrasonic velocity is modified to consider the medium as the homogeneous mixture of air and steam. and to be applied into the high temperature and pressure conditions. The cross-correlation technique is adopted as a detection method to reduce the effects of the attenuation and the dif.JUsed reflection caused by suface fluctuation. The waveguides are developed to reduce the loss of echo and to remove the effects of obstructs. The present experimental study shows that the developed ultrasonic method measures the two-phase mixture level more accurately than the conventional methods do.

  • PDF

The Phase-sensitivity of a Mach-Zehnder Interferometer for Coherent Light

  • Shin, Jong-Tae;Kim, Heo-Noh;Park, Goo-Dong;Kim, Tae-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • We have studied the sensitivity of four different phase shift measurement schemes with a Mach-Zehnder interferometer. The input light is considered to be in a coherent state and the detectors are assumed to be ideal with the quantum efficiency of unity. It is shown by direct calculation of the operators corresponding to the measurement schemes that the uncertainty of the phase-shift measurement is limited to the classical one $\frac{1}{\sqrt{m}}$(m is the average number of the photons in the input state) regardless of the phase-shift measurement schemes.