• Title/Summary/Keyword: Phase locked loop (PLL)

Search Result 414, Processing Time 0.024 seconds

A Method to Improve the Performance of Phase-Locked Loop (PLL) for a Single-Phase Inverter Under the Non-Sinusoidal Grid Voltage Conditions (비정현 계통 전압하에서 단상 인버터의 PLL 성능 개선 방법)

  • Khan, Reyyan Ahmad;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.231-239
    • /
    • 2018
  • The phase-locked loop (PLL) is widely used in grid-tie inverter applications to achieve a synchronization between the inverter and the grid. However, its performance deteriorates when the grid voltage is not purely sinusoidal due to the harmonics and the frequency deviation. Therefore, a high-performance PLL must be designed for single-phase inverter applications to guarantee the quality of the inverter output. This paper proposes a simple method that can improve the performance of the PLL for the single-phase inverter under a non-sinusoidal grid voltage condition. The proposed PLL can accurately estimate the fundamental frequency and theta component of the grid voltage even in the presence of harmonic components. In addition, its transient response is fast enough to track a grid voltage within two cycles of the fundamental frequency. The effectiveness of the proposed PLL is confirmed through the PSIM simulation and experiments.

Increased Effective Capacitance with Current Modulator in PLL (Current Modulator를 이용하여 유효커패시턴스를 크게 하는 위상고정루프)

  • Kim, Hye-Jin;Choi, Young-Shig
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.136-141
    • /
    • 2016
  • A phase-locked loop(PLL) with effectively increased capacitance by current modulator has been proposed. In this paper, the effective capacitance of loop filter is increased by using current modulator and it results in 1/10 reduction of capacitance in loop filter. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process. The simulation results show that the proposed PLL has the same phase noise characteristic and locking time of conventional PLL.

Analysis for bit synchronization using charge-pump phase-locked loop (비트 동기 Charge-pump 위상 동기 회로의 해석)

  • 정희영;이범철
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.14-22
    • /
    • 1998
  • The Mathematic model of bit synchronization charge-pump Phase Locked Loop (PLL) is presented which takes into account the aperiodic reference pulses and the leakage current of the loop filter. We derive theoreitcal static phase error, overload and stability of bit synchronization charge-pump PLL using presented model and compare it with one of the conventional charge-pump PLL model. We can analysis bit synchronization charge-pump PLL exactly because our model takes into account the leakage current of the loop filter and aperiodic input data which are the charateristics of bit synchronization charge-pump PLL. We also verify it using HSPICE simulation with a bity synchronizer circuit.

  • PDF

Increased Effective Capacitance in PLL (유효 커패시턴스를 증가를 구현한 소형 위상고정루프)

  • Ahn, Sung-Jin;Choi, Young-Shig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.698-701
    • /
    • 2016
  • A phase-locked loop(PLL) with effectively increased capacitance by current modulator has been proposed. In this paper, the effective capacitance of loop filter is increased by using current modulator and it results in 1/10 reduction of capacitance in loop filter. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process. The simulation results show that the proposed PLL has the same phase noise characteristic and locking time of conventional PLL.

  • PDF

Analysis of Phase Noise in Digital Hybrid PLL Frequency Synthesizer (디지탈 하이브리드 위상고정루프(DH-PLL) 주파수 합성기의 위상잡음 분석)

  • 이현석;손종원;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.649-656
    • /
    • 2002
  • This paper addresses the phase noise analysis of high-speed DH-PLL(Digital Hybrid Phase-Locked Loops) frequency synthesizer. Because of the additional quantization noise of D/A converter in DH-PLL, the phase noise of DH-PLL is increased than the conventional PLL. Three kinds of noise sources such as reference input, D/A converter, and VCO(Voltage Controlled Oscillator) are considered to analyze the phase noise. It largely depends on the closed loop bandwidth and frequency synthesis division ratio(N) so that we can decide the optimal closed loop bandwidth to minimize the phase noise of DH-PLL. It is shown that the simulation results closely match with the results of analytical approach.

Performance Analysis of Three-Phase Phase-Locked Loops for Distorted and Unbalanced Grids

  • Li, Kai;Bo, An;Zheng, Hong;Sun, Ningbo
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper studies the performances of five typical Phase-locked Loops (PLLs) for distorted and unbalanced grid, which are the Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL), Double Second-Order Generalized Integrator PLL (DSOGI-PLL), Double Second-Order Generalized Integrator Frequency-Lock Loop (DSOGI-FLL), Double Inverse Park Transformation PLL (DIPT-PLL) and Complex Coefficient Filter based PLL (CCF-PLL). Firstly, the principles of each method are meticulously analyzed and their unified small-signal models are proposed to reveal their interior relations and design control parameters. Then the performances are compared by simulations and experiments to investigate their dynamic and steady-state performances under the conditions of a grid voltage with a negative sequence component, a voltage drop and a frequency step. Finally, the merits and drawbacks of each PLL are given. The compared results provide a guide for the application of current control, low voltage ride through (LVRT), and unintentional islanding detection.

A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators

  • Chung, Il-Yop;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2007
  • This paper proposes a new islanding detection method for inverter-interfaced distributed generators (DG). To detect islanding conditions, this paper calculates the phase angle variation of the system voltage by using the phase-locked loop (PLL) in the inverter controllers. Because almost all inverter systems are equipped with the PLL, the implementation of this method is fairly simple and economical for inverter-interfaced DGs. The detection time can also be shortened by reducing communication delay between the relays and the DGs. The proposed method is based on the fact that islanding conditions result in the frequency and voltage variation of the islanded area. The variation depends on the amount of power mismatch. To improve the accuracy of the detection algorithm, this paper injects small low-frequency reactive power mismatch to the output power of DG.

Design and Fabrication of Low Phase-Noise Frequency Synthesizer using Dual Loop PLL for IMT-2000 (이중루프 PLL을 이용한 IMT-2000용 저위상잡음 주파수합성기의 설계 및 제작)

  • 김광선;최현철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.163-166
    • /
    • 1999
  • In this paper, frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop). For improving phase noise characteristic Voltage Controlled Oscillator was fabricated using coaxial resonator and eliminated frequency divider using SPD as phase detector and increased open loop gain. Fabricated frequency synthesizer had 1.82㎓ center frequency, 160MHz tuning range and -119.73㏈c/Hz low phase noise characteristic.

  • PDF

Performance Evaluation of Various PLL Techniques for Single Phase Grids (단상 계통연계 운전을 위한 다양한 PLL 기법의 성능 평가)

  • Das, Partha Sarati;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • In order to evaluate the response of the grid-connected systems, Phase lock technology is widely used in power electronic devices to obtain the phase angle, amplitude, and frequency of the grid voltage because phase locked loop (PLL) algorithms are very important for grid synchronization and monitoring in the grid connected power electronic devices. This paper presents a performance evaluation in tracking grid angular frequency through single phase synchronization techniques which are an enhanced PLL (EPLL), second-order generalized integrator-PLL (SOGI-PLL), and second-order generalized integrator-frequency locked loop (SOGI-FLL). These techniques are properly analyzed through several steps to get the best technique which can track the frequency accurately and smoothly.

  • PDF

Fourier-Based PLL Applied for Selective Harmonic Estimation in Electric Power Systems

  • Santos, Claudio H.G.;Ferreira, Reginaldo V.;Silva, Sidelmo Magalhaes;Cardoso Filho, Braz J.
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.884-895
    • /
    • 2013
  • In this paper, the Fourier-based PLL (Phase-locked Loop) is introduced with a new structure, capable of selective harmonic detection in single and three-phase systems. The application of the FB-PLL to harmonic detection is discussed and a new model applicable to three-phase systems is introduced. An analysis of the convergence of the FB-PLL based on a linear model is presented. Simulation and experimental results are included for performance analysis and to support the theoretical development. The decomposition of an input signal in its harmonic components using the Fourier theory is based on previous knowledge of the signal fundamental frequency, which cannot be easily implemented with input signals with varying frequencies or subjected to phase-angle jumps. In this scenario, the main contribution of this paper is the association of a phase-locked loop system, with a harmonic decomposition and reconstruction method, based on the well-established Fourier theory, to allow for the tracking of the fundamental component and desired harmonics from distorted input signals with a varying frequency, amplitude and phase-angle. The application of the proposed technique in three-phase systems is supported by results obtained under unbalanced and voltage sag conditions.