• Title/Summary/Keyword: Phase Modeling

Search Result 1,312, Processing Time 0.028 seconds

Business Process Model for Progress Phase of Design-Build Project (설계시공일괄방식 사업의 진행단계별 업무프로세스 모델)

  • Song, Young-Woong;Son, Bo-Sik;Chun, Jae-Youl;Choi, Yoon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.4
    • /
    • pp.38-49
    • /
    • 2009
  • In public project market, design-build projects have been increased because of market trend change which enables technical competition. In this condition, its importance is also getting important. Generally, life cycle of design-build project consists of planning, preliminary design, procurement, contract, detail design, start of construction, construction, end of construction, and evaluation. From contractor's viewpoint, it has problems such as difficulties in project management and information sharing because of frequent change of charged division. To solve these problems, it is desirable to change from function-based management system to process-based management system. The purpose of this study is to develop management process model for design-build project by progress phases. This study analyzed main conflicts and decision making factors of each stage in design-build projects, then systemized management subjects' responsibilities and management points' change. And also this study defined the key information that is the key point by project characteristics and progress phases. Based on this analysis, this study did business process modeling from planning stage to construction design check stage. At last, we proposed the way to manage business process by design-build project progress.

Analysis of the Behavior of Tubular-Type Equipment for Nuclear Waste Treatment : Sensitivities of the Parameters Affecting Mass Transfer Yield (방사성폐기물의 화학처리공정에 사용되는 유동관식 장치의 해석 : 물질전달 수율에 미치는 매개변수들의 민감도)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.91-99
    • /
    • 2007
  • It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipments, as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities. affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the backmixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface, and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate.

  • PDF

A Study on Control Algorithms of Efficiency Improvement Device for PV System Operation using Li-ion Battery (리튬이온전지를 이용한 태양광전원의 운용효율향상장치의 제어 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Kim, Byung-Mok;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.590-597
    • /
    • 2018
  • Recently, the installation of PV systems has been increasing due to the worldwide interest in eco-friendly and renewable solar energy. On the other hand, the output power of PV systems is influenced strongly by the surrounding weather conditions. In addition, the entire operation efficiency of PV systems may be decreased considerably even if only some of the PV modules are in the shade. In other words, the existing control method at which strings with modules in series are connected to an inverter may be not operated in the case that the string voltage in partial shade is lower than the operating range of the grid connected inverter. To overcome these problems, this paper proposes an operation efficiency improvement device of a PV system using a Li-ion battery, which can compensate for the voltage of each string in the PV system when it is partially shaded. In addition, this paper presents the modeling of the operation efficiency improvement device, including PV strings, Li-ion battery and a 3-Phase grid inverter based on the PSIM S/W. From the simulation results, it was confirmed that the proposed control method can improve the operating efficiency of PV systems by compensating for the string voltage with partial shade.

High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid (1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide 이온성 액체에 대한 이산화탄소의 고압 용해도)

  • Nam, Sang-Kyu;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.79-91
    • /
    • 2014
  • Solubility data of carbon dioxide ($CO_2$) in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide ($[bmpip][Tf_2N]$) ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the $CO_2$ solubility in the $[bmpip][Tf_2N]$ ionic liquid have never been reported in the literature by other investigators. The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the $CO_2+[bmpip][Tf_2N]$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the $CO_2$ solubility, the $CO_2$ solubilities in $[bmpip][Tf_2N]$ used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ($[bmim]Tf_2N]$). As the equilibrium pressure increased, the $CO_2$ solubility in $[bmpip][Tf_2N]$ increased sharply. On the other hand, the $CO_2$ solubility decreased with increasing temperature. The mole fraction-based $CO_2$ solubilities were almost the same for both $[bmpip][Tf_2N]$ and $[bmim][Tf_2N]$, regardless of temperature and pressure. The phase equilibrium data for the $CO_2+[bmpip][Tf_2N]$ systems have been correlated using the Peng-Robinson equation of state.

A Study on Fault Characteristics of Wind Power in Distribution Feeders (풍력발전(DFIG)의 고압배전선로의 사고특성 해석에 관한 연구)

  • Kim, So-Hee;Kim, Byung-Ki;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1288-1295
    • /
    • 2012
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

Pharmacokinetic Modeling of Reversible Interconversion between Prednisolone and Prednisone (가역적상호대사과정 모델을 이용한 Prednisolone과 Prednisone의 약동학적 분석)

  • Shin, Jae-Gook;Yoon, Young-Ran;Cha, In-June;Jang, In-Jin;Lee, Kyung-Hoon;Shin, Sang-Goo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.269-281
    • /
    • 1996
  • Pharmacokinetics of prednisolone and prednisone undergoing reversible interconversion were analyzed from the model including this metabolic process. Blood samples were drawn serially upto 12 hours after I,V. bolus injection of 1 mg/kg prednisolone sodium phosphate and prednisone into 8 dogs as a crossover manner. Plasma concentrations of those two steroids were simultaneously measured with the method of HPLC. After injection, plasma concentrations of administered prednisolone and prednisone were declined with a biexponential pattern and their metabolic partner was rapidly formed. Plasma concentrations of those metaboite were decayed in parallel with their parent steroids throught the elimination phase. Apparent clearances of prednisolone and prednisone were $11.1{\pm}2.0\;ml/min/kg$ and $45.9{\pm}6.4\;ml/min/kg$, and they were underestimated by 29.4% and 33.6% compared to their real clearances$(15.7{\pm}4.4\;and\;69.2{\pm}17.7\;ml/min/kg)$ estimated using reversible interconversion model. Apparent volume of distribution of prednisolone$(1.32{\pm}0.43\;L/kg)$ and prednisone$(4.81{\pm}2.75\;L/kg)$ were overestimated by 53.5 and 52.7% and were compared to the real volumes $(0.86{\pm}0.30\;and\;3.15{\pm}2.13\;L/kg)$. Mean residence time of prednisolone$(2.0{\pm}0.61\;h)$ and prednisone$(1.74{\pm}0.74\;h)$ were much longer than the real sojourn time$(0.93{\pm}0.26\;and\;0.88{\pm}0.54\;h)$. Essential clearances In the reversible interconversion were greater as following orders: $Cl_{21}$(44.3 ml/min/kg) > $Cl_{20}$(24.2 ml/min/kg) > $Cl_{12}$ (7.9 ml/min/kg) > $Cl_{10}$(7.8 ml/min/kg). Estimated mean values of RF, EE, $%X^1_{ss}$ and $RHO^2_1$ were $0.31{\pm}0.10$, $1.49{\pm}0.23$, $69.3{\pm}16.7%$ and $0.65{\pm}0.10$, respectively. These results suggested that true pharmacokinetic parameters estimated from the model including reversible interconversion were significantly different from the apparent parameters estimated from the conventional mamillary model, and disposition of these two steroids seemed to be well explained by the model including reversible interconversion.

  • PDF

Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia (CMIP5 GCM의 동아시아 해안지역에 대한 공간적 강우특성 재현성 평가)

  • Hwang, Syewoon;Cho, Jeapil;Yoon, Kwang Sik
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.629-642
    • /
    • 2018
  • Future variability of the spatial patterns of rainfall events is the point of water-related risks and impacts of climate change. Recent related researches are mostly conducted based on the outcomes from General Circulation Models (GCMs), especially Coupled Model Intercomparison Project, phase 5 (CMIP5) GCMs which are the most advanced version of climate modeling system. GCM data have been widely used for various studies as the data utility keep getting improved. Meanwhile the model performances especially for raw GCM outputs are rarely evaluated prior to the applications although the process would essential for reasonable use of model forecasts. This study attempt to quantitatively evaluate the skills of 29 CMIP5 GCMs in reproducing spatial climatologies of precipitation in East Asia. We used 3 different gridded observational data as the references available over the study area and calculated correlation and errors of spatial patterns simulated by GCMs. As a result, the study presented diversity of the GCM evaluation in the performance, rank, or accuracy by different configurations, such as target area, evaluation method, and observation data. Yet, we found that Hadley-centre affiliated models comparatively performs better for the meso-scale area in East Asia and MPI_ESM_MR and CMCC family showed better performance specifically for the korean peninsula. We expect that the results and thoughts of this study would be considered in screening suitable GCMs for specific area, and finally contribute to extensive utilization of the results from climate change related researches.

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.

Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions (전해질 수용액에서 L-Alanine의 활동도계수와 용해도의 측정 및 모델링)

  • Lee, Bong-Seop;Kim, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.519-533
    • /
    • 2010
  • Activity oefficients and solubilities of L-Alanine in aqueous solutions containing each of four electrolytes(NaCl, KCl, $NaNO_3$ and $KNO_3$) were measured at 298.15 K. The measurements of activity coefficients were carried out in the electrochemical cell coupled with two ion-selective electrodes(cation and anion), and the solubilities were measured by the gravimetric analysis of saturated solutions in equilibrium with the solid phase of L-alanine. To model the activity coefficients and solubilities of amino acid in the amino acid/electrolyte aqueous solutions, thermodynamic relations of the residual Helmholtz free energy in the amino acid/electrolyte aqueous solutions were developed based on the perturbed-chain statistical associating fluid theory(PC-SAFT) combined with the primitive mean spherical approximation(primitive-MSA). In the present model, it is assumed that the zwitterions of L-alanine are associated with each other and cross-associated with water molecules, and also cross-associated with the cation and anion dissociated from an electrolyte(inorganic salt). The activity coefficients and solubilities of L-Alanine calculated from the theoretical model proposed in this work are found to be well agreeable with experimental data.

A Study of the Establishment of Framework for Information Exchange based on IFC Model in Domestic Collaborative Design Environment (국내 협업 설계 환경에서의 IFC기반 정보 교환 프레임워크 구축에 관한 연구)

  • Shin, Joonghwan;Kwon, Soonwook;Lee, Kyuhyup;Choi, Sangduck;Kim, Jinman
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • As recent multilateral collaboration design system has been advanced, BIM based data exchange is a key factor for successful next generation building project. Even though many studies have been trying to set up a data compatibility system for collaboration, There are still a lot of problem in data exchange between design and engineering phase. Therefore, In this study, we analysis causes of problem for information exchange and suggest a IFC based Information exchange framework for improving BIM based design collaboration environment. In order to find out problems that hinder establishment of advanced open BIM information exchange, proper analysis about transition of process from current and to-be BIM based design collaboration process is important, at first. From analysis of main obstacles to information exchange, this research suggests solution plan using open API and IFC based BIM collaboration supporting system. The suggested open API solution named Integrity feedback system perform a role making up for weak point derived from IFC based data exchange. And main system suggestion about framework for IFC based information exchange reflect technological system support, requirement of function for collaboration including API/BCF plug-in.