Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions

전해질 수용액에서 L-Alanine의 활동도계수와 용해도의 측정 및 모델링

  • Lee, Bong-Seop (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Ki-Chang (Department of Chemical Engineering, Kangwon National University)
  • 이봉섭 (강원대학교 화학공학과) ;
  • 김기창 (강원대학교 화학공학과)
  • Received : 2010.03.12
  • Accepted : 2010.04.13
  • Published : 2010.08.31

Abstract

Activity oefficients and solubilities of L-Alanine in aqueous solutions containing each of four electrolytes(NaCl, KCl, $NaNO_3$ and $KNO_3$) were measured at 298.15 K. The measurements of activity coefficients were carried out in the electrochemical cell coupled with two ion-selective electrodes(cation and anion), and the solubilities were measured by the gravimetric analysis of saturated solutions in equilibrium with the solid phase of L-alanine. To model the activity coefficients and solubilities of amino acid in the amino acid/electrolyte aqueous solutions, thermodynamic relations of the residual Helmholtz free energy in the amino acid/electrolyte aqueous solutions were developed based on the perturbed-chain statistical associating fluid theory(PC-SAFT) combined with the primitive mean spherical approximation(primitive-MSA). In the present model, it is assumed that the zwitterions of L-alanine are associated with each other and cross-associated with water molecules, and also cross-associated with the cation and anion dissociated from an electrolyte(inorganic salt). The activity coefficients and solubilities of L-Alanine calculated from the theoretical model proposed in this work are found to be well agreeable with experimental data.

본 연구에서는 L-형 아미노산인 L-Alanine과 무기염인 NaCl, KCl, $NaNO_3$$KNO_3$의 각 전해질로 이루어진 L-Alanine/전해질 수용액 계에서 L-Alanine의 활동도계수와 용해도를 298.15 K에서 측정하였다. L-Alanine의 활동도계수는 양이온 및 음이온의 선택성 전극으로 이루어진 화학전지에서 두 전극간의 기전력을 측정하는 전기화학 법으로 측정하였으며, 용해도는 L-Alanine의 고체상과 상평형을 이루고 있는 포화용액을 중량 분석하여 측정하였다. 한편 본 연구에서는 아미노산(L-Alanine)/전해질 수용액 계의 잔류(residual) Helmholtz 자유에너지를 섭동사슬-통계역학적 회합성유체이론(perturbed chain-statistical associating fluid theory)과 단순-평균구근사(primitive-mean spherical approximation)이론을 결합한 관계로 모델링 하였으며, 이로부터 아미노산의 활동도계수 및 용해도에 대한 열역학적 관계식을 얻었다. Helmholtz 자유에너지를 모델링 하는 과정에서는 아미노산은 양쪽성 이온(zwitterion) 형태로 존재하며 아미노산의 양쪽성 이온은 같은 이온끼리 자기-회합(self-association)하며 동시에 물분자와 교차-회합(cross-association)하는 회합체로 가정하였으며, 또한 아미노산의 양쪽성 이온이 전해질(무기염)로부터 해리된 양이온 및 음이온과 상호작용하여 이온복합체(ion complex)를 형성하는 과정을 회합현상으로 가정하였다. 본 연구에서 제안된 이론적 모델로부터 L-Alanine/전해질 수용액 계에서 계산되는 L-Alanine의 활동도계수 및 용해도 값은 본 연구의 실험값과 일치하는 경향을 보였다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. Bell, D. J., Hoare, M. and Dunnill, P., "The Formation of Protein Precipitates and Their Centrifugal Recovery," Advances in biochemical engineering/biotechnology, 26, 1-27(1983). https://doi.org/10.1007/BFb0001860
  2. Subramanian, G., Bioseparations and Bioprocessing vol. 1, Wiley-VCH Verlag GmbH & Co., Weinheim(2007).
  3. Kirkwood, J. G., "Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions," J. Chem. Phys., 2(7), 351-361(1934). https://doi.org/10.1063/1.1749489
  4. Kirkwood, J. G., "Theoretical Studies Upon Dipolar Ions," Chem. Rev., 24, 233-251(1939). https://doi.org/10.1021/cr60078a004
  5. Chen, C.-C., Zhu, Y. and Evans, L. B., "Phase Partitioning of Biomolecules: Solubilities of Amino Acids," Biotechnol. Prog., 5(3), 111-118(1989). https://doi.org/10.1002/btpr.5420050309
  6. Chen, C. C., Britt, H. I., Boston, J. F. and Evans, L. B., "Local Composition Model for Excess Gibbs Energy of Electrolyte Systems," AIChE J., 28(4), 588-596(1982). https://doi.org/10.1002/aic.690280410
  7. Rodrquez-Raposo, R., Fernndez-Mrida, L. and Esteso, M. A., "Activity Coefficients in (electrolyte+amino acid)(aq) the Dependence of the Ion-zwitterion Interactions on the Ionic Strength and on the Molality of the Amino Acid Analysed in Terms of Pitzer's Equations," J. Chem. Thermodyn., 26, 1121-1128(1994). https://doi.org/10.1006/jcht.1994.1131
  8. Fernndez-Mrida, L., Rodrquez-Raposo, R., Garca-Garca, G. E. and Esteso, M. A., "Modification of the Pitzer Equations for Application to Electrolyte+polar Non-electrolyte Mixutres," J. Electroanal. Chem., 379, 63-69(1994). https://doi.org/10.1016/0022-0728(94)87125-6
  9. Pitzer, K. S., "Activity Coefficients in Electrolyte Solutions," second edition, CRC press, Boca Raton, Florida(1991).
  10. Khoshkbarchi, M. K. and Vera, J. H., "Measurement and Modeling of Activities of Amino Acids in Aqueous Salt Systems," AIChE J., 42(8), 2354-2364(1996). https://doi.org/10.1002/aic.690420824
  11. Khoshkbarchi, M. K. and Vera, J. H., "Activity Coefficients of DL-Valine in Aqueous Solutions of KCl at $25^{\circ}C$. Measurement with Ion Selective Electrodes and Modelling," J. of Sol. Chem., 25(9), 865-875(1996). https://doi.org/10.1007/BF00972578
  12. Bromley, L. A., "Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions," AIChE J., 19(2), 313-320(1973). https://doi.org/10.1002/aic.690190216
  13. Khoshkbarchi, M. K. and Vera, J. H., "Measurement and Correlation of Ion Activity in Aqueous Single Electrolyte Solutions," AIChE J., 42(1), 249-258(1996). https://doi.org/10.1002/aic.690420121
  14. Pazuki, G. R., Rohani, A. A. and Dashtizadeh, A., "Correlation of the Mean Ionic Activity Coefficients of Electrolytes in Aqueous Amino Acid and Peptide Systems," Fluid Phase Equilibria, 231, 171-175(2005). https://doi.org/10.1016/j.fluid.2005.02.003
  15. Haghtalab, A. and Vera, J. H., "A Nonrandom Factor Model for the Excess Gibbs Energy of Electrolyte Solutions," AIChE J., 34(5), 803-813(1988). https://doi.org/10.1002/aic.690340510
  16. Pazuki, G. R., Taghikhani, V. and Vossoughi, M., "Correlation and Prediction the Activity Coefficients and Solubility of Amino Acids and Simple Peptide in Aqueous Solution Using the Modified Local Composition Model," Fluid Phase Equilibria, 255, 160-166(2007). https://doi.org/10.1016/j.fluid.2007.04.006
  17. Zhao, E., Yu, M., Sauvé, R. E. and Khoshkbarchi, M. K., "Extension of the Wilson Model to Electrolyte Solutions," Fluid Phase Equilibria, 173, 161-175(2000). https://doi.org/10.1016/S0378-3812(00)00393-9
  18. Sadeghi, R., "Thermodynamic Representation of Phase Equilibrium Behavior of Aqueous Solutions of Amino Acids by the Modified Wilson Model," Fluid Phase Equilibria, 260, 266-274(2007). https://doi.org/10.1016/j.fluid.2007.07.024
  19. Sadeghi, R., "Modification of the NRTL and Wilson Models for Acid-electrolyte Solutions," Can. J. Chem., 86, 1126-1137 (2008). https://doi.org/10.1139/v08-166
  20. Khoshkbarchi, M. K. and Vera, J. H., "A Perturbed Hard-sphere Model with Mean Spherical Approximation for the Activity Coefficients of Amino Acids in Aqueous Electrolyte Solutions," Ind. Eng. Chem. Res., 35(12), 4755-4766(1996). https://doi.org/10.1021/ie960284p
  21. Blum, L. and Hye, J. S., "Mean Spherical Model for Asymmetric Electrolytes 2. Thermodynamic Properties and the Pair Correlation Function," J. Phys. Chem., 81(13), 1311-1316(1977). https://doi.org/10.1021/j100528a019
  22. Gao, C. and Vera, J. H., "The Activity Coefficients of Glycine, DL-serine and DL-valine in Aqueous Solutions Containing Nitrates at 298.15 K," Can. J. Chem. Eng., 79, 392-104(2001). https://doi.org/10.1002/cjce.5450790312
  23. Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M., "New Reference Equation of State for Associating Liquids," Ind. Eng. Chem. Res., 29(8), 1709-1721(1990). https://doi.org/10.1021/ie00104a021
  24. Huang, S. and Radosz, M., "Equation of State for Small, Large, Polydisperse, and Associating Molecules," Ind. Eng. Chem. Res., 29(11), 2284-2294(1990). https://doi.org/10.1021/ie00107a014
  25. Gross, J. and Sadowski, G., "Perturbed-chain SAFT: An Equation of State Based on a Perturbed Theory for Chain Molecules," Ind. Eng. Chem. Res., 40(4), 1244-1260(2001). https://doi.org/10.1021/ie0003887
  26. Lee, B.-S. and Kim, K.-C., "Modeling of Aqueous Electrolyte Solutions Based on Perturbed-chain Statistical Associating Fluid Theory Incorporated with Primitive Mean Spherical Approximation," Korean J. Chem. Eng., 26(6), 1733-1747(2009). https://doi.org/10.1007/s11814-009-0286-4
  27. Lee, B.-S. and Kim, K.-C., "Study on the Activity Coefficients and Solubilities of Amino Acids in Aqueous Solutions with Perturbed-chain Statistical Associating Fluid Theory," Korean J. Chem. Eng., 27(1), 267-277(2010). https://doi.org/10.1007/s11814-009-0351-z
  28. Israelachvili, J. N., "Intermolecular and Surface Forces," second edition, Academic press Inc., San Diego, CA(1991).
  29. Soto-Campos, A. M., Khoshkbarchi, M. K. and Vera, J. H., "Interaction of DL-threonine with NaCl and $NaNO_3$ in Aqueous Solutions: e.m.f. Measurements with Ion-selective Electrodes," J. Chem. Thermodyn., 29, 609-622(1997). https://doi.org/10.1006/jcht.1996.0182
  30. Soto-Campos, A. M., Khoshkbarchi, M. K. and Vera, J. H., "Effect of the Anion and the Cation of an Electrolyte on the Activity Coefficient of DL-alanine in Aqueous Solutions," Fluid Phase Equilibria, 142, 193-204(1998). https://doi.org/10.1016/S0378-3812(97)00219-7
  31. Khoshkbarchi, M. K. and Vera, J. H., "Measurement of Activity Coefficients of Amino Acids in Aqueous Electrolyte Solutions: Experimental Data of the Systems $H_2O+NaCl+Glycine$ and $H_2O +NaCl+DL-Alanine$ at $25^{\circ}C$," Ind. Eng. Chem. Res., 35, 2735-2742(1996). https://doi.org/10.1021/ie950581e
  32. Chung, Y.-M. and Vera, J. H., "Activity of the Electrolyte and the Amino Acid in the Systems $Water+DL-{\alpha}-aminobytyric$ acid+NaCl, +NaBr, +KCl, and +KBr at 298.2 K," Fluid Phase Equilibria, 203, 99-110(2002). https://doi.org/10.1016/S0378-3812(02)00183-8
  33. Khoshkbarchi, M. K. and Vera, J. H., "Effect of NaCl and KCl on the Solubility of Amino Acids in Aqeous Solutions at 298.2 K: Measurements and Modeling," Ind. Eng. Chem. Res. 36, 2445-2451(1997).
  34. Liu, Y., Li, Z., Mi, J. and Zhong, C., "Modeling of Aqueous Electrolyte Solutions Based on Primitive and First-order Mean Spherical Approximation," Ind. Eng. Chem. Res., 47(5), 1695-1701(2008). https://doi.org/10.1021/ie071068r
  35. Harris, E. L. V. and Angal, S., Protein purification methods: A practical approach, Oxford University Press, NY(1989).
  36. Barrett, G. C., Chemistry and biochemistry of the amino acids, Chapman and Hall, New York(1985).
  37. Badarayani, R. and Kumar, A., "Ionic Interactions from Volumetric Investigations of L-alanine in NaBr, KCl, KBr and $MgCl_2$ up to High Concentrations," Fluid Phase Equilibria, 201, 321-333(2002). https://doi.org/10.1016/S0378-3812(02)00081-X
  38. Yuan, Q., Li, Z.-F. and Wang, B.-H., "Partial Molar Volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and Glycylglycine in Water, NaCl, and DMSO Aqueous Solutions at T=298.15 K," J. Chem. Thermodyn., 38, 20-33(2006). https://doi.org/10.1016/j.jct.2005.03.015
  39. Hamer, W. J. and Wu, Y.-C., "Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at $25^{\circ}C$," J. Phys. Chem. Ref. Data, 1, 1047-1099(1972). https://doi.org/10.1063/1.3253108
  40. Green, J. P. and Winitz, M., Chemistry of Amino Acids Vol. 1,, John Wiley & Sons, New York(1961).
  41. Khoshkbarchi, M. K. and Vera, J. H., "A Simplified Perturbed Hard-sphere Model for the Activity Coefficients of Amino Acids and Peptides in Aqueous Solutions," Ind. Eng. Chem. Tes., 35(11), 4319-4327(1996). https://doi.org/10.1021/ie960076x
  42. Wolbach, J. P. and Sandler, S. I., "Using Molecular Orbital Calculations to Describe the Phase Behavior of Cross-associating Mixtures," Ind. Eng. Chem. Res., 37(8), 2917-2928(1998). https://doi.org/10.1021/ie970781l