• Title/Summary/Keyword: Phase Inversion

Search Result 398, Processing Time 0.022 seconds

Preparation of Higher Reinforced PVDF Hollow Fiber Microfiltration Membrane (고강도 PVDF 중공사 정밀여과막 제조 특성)

  • Choi, R.S.;Park, H.H.
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.320-325
    • /
    • 2010
  • This paper was carried out to study the preparation condition and the permeation flux of reinforced poly(vinylidene fluoride) (PVDF) hollow fiber microfiltration (MF) membrane with the solvent, additive, second miscible polymer, and preparation condition used poly(vinylidene fluoride) (PVDF) such as a material with the excellent chemical stability and the milder preparation condition. The performance of the reinforced MF membrane prepared obtained the average $0.3{\mu}m$ pore size, $42kg_f/cm^2$ tensile strength, and the high water flux of 600 LMH. The change of membrane performance with various additives was considerably affected on the water flux and rejection. For hydrophilic modification of hydrophobic PVDF MF membrane, the MF membrane might be prepared with a prefer water flux and rejection by addition of hydrophilic poly(methyl methacrylate) (PMMA).

Preparation and Characterization of PVdF-HFP Microporous Membranes for Li-ion Rechargeable Battery (Poly(vinylidene fluoride-hexafluoropropylene)를 이용한 이차전지용 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Yoo, Hyun-Oh;Kim, Jong-Man;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.359-368
    • /
    • 2007
  • The copolymer membranes, poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) were prepared by phase inversion method using as an additive with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The highest porosity of the membrane was 60%. The surface and cross-section of the membranes was observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM). Tensile strength of measured membranes is presented the maximum 6.57 MPa at 30 wt% of PVdF-HFP.

Potential Mapping of Moisan area Using SIP and 3D Geological Modeling (복소 전기비저항 및 3차원 지질모델링을 이용한 모이산 포텐셜 지도 구축)

  • Park, Gyesoon;Park, Samgyu;Son, Jeong-Sul;Kim, Changryol;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2014
  • In order to develop a new mineral exploration technique, a study was carried out about the potential mapping of Moisan area using SIP (Spectral Induced Polarization) data. The SIP inversion results were classified according to the geological regions, and the distribution characteristics of resistivity and phase values of SIP data were analyzed at the ore region. Based on the characteristics of SIP of ore bodies, we performed 3D potential mapping of Moisan area. The analyzed potential map was verified using that the locations and patterns of high potential regions of the results are well matched with those of the known ore bodies. If we get the higher spatial resolution SIP data, the potential mapping technique using SIP data can be effectively applied to the estimation of mining deposit.

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

PVDF/h-BN hybrid membranes and their application in desalination through AGMD

  • Moradi, Rasoul;Shariaty-Niassar, Mojtaba;Pourkhalili, Nazila;Mehrizadeh, Masoud;Niknafs, Hassan
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.221-231
    • /
    • 2018
  • A new procedure to produce poly(vinylidene fluoride)/boron nitride hybrid membrane is presented for application in membrane distillation (MD) process. The influence of hexagonal boron nitride (h-BN) incorporation on the performance of the polymeric membranes is studied through the present investigation. For this aim, h-BN nanopowders were successfully synthesized using the simple chemical vapor deposition (CVD) route and subsequent solvent treatments. The resulting h-BN nanosheets were blended with poly(vinylidene fluoride) (PVDF) solution. Then, the prepared composite solution was subjected to phase inversion process to obtain PVDF/h-BN hybrid membranes. Various examinations such as scanning electron microscopy (SEM), wettability, permeation flux, mechanical strength and liquid entry pressure (LEP) measurements are performed to evaluate the prepared membrane. Moreover, Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our hybrid PVDF/h-BN membrane presents higher water permeation flux (${\sim}18kg/m^2h$) compared to pristine PVDF membrane. In addition, the experimental data confirms that the prepared nanocomposite membrane is hydrophobic (water contact angle: ${\sim}103^{\circ}$), has a porous skin layer (>85%), as well competitive fouling resistance and operational durability. Furthermore, the total salt rejection efficiency was obtained for PVDF/h-BN membrane. The results prove that the novel PVDF/h-BN membrane can be easily synthesized and applied in MD process for salt rejection purposes.

Adsorptive removal of Ni(II) ions from aqueous solution by PVDF/Gemini-ATP hybrid membrane

  • Zhang, Guifang;Qin, Yingxi;Lv, Chao;Liu, Xingtian;Zhao, Yiping;Chen, Li
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • As a highly hydrophilic fibrillar mineral in nature, attapulgite (ATP) is a promising new additive for preparation of ultrafiltration (UF) hybrid membrane. In this work, ATP particles, which were grafted with a new Gemini surfactant of Ethyl Stearate-di(octadecyl dimethyl ammonium chloride) to detach the crystal bundles to single crystal and enhance the uniform dispersion in an organic polymer matrix, were incorporated into poly(vinylidene fluoride) (PVDF) matrix, and PVDF/Gemini-ATP hybrid membranes for adsorptive removal of Ni(II) ions from aqueous solution were prepared via a phase inversion method. Chemical composition, crystalization and morphology of the modified ATP were characterized by Fourier transform infrared spectroscopy (FTIR), Transmission electron microscope (TEM) and X-ray diffraction (XRD), respectively. The morphology of the hybrid membrane was characterized by Scanning electron microscopy (SEM), the performance of permeability, hydrophilicity and adsorption of Ni(II) ions were studied, and the adsorption kinetics of the PVDF/ATP hybrid membranes were particular concerned. The results showed that the hybrid membrane displayed a good thermal stability and hydrophilicity. Comparing with PVDF membrane, the hybrid membrane possessed good adsorption capacity for Ni(II) ions, and the adsorption kinetics fit well with Lagergren second-order equation.

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman;Ali, Sahar;Abdalla, Heba;Saied, Marwa
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2016
  • Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

60 GHz Optical Carrier Generator using Quasi-Velocity-Matching Technique (Quasi-Velocity-Matching물 이용한 60 GHz 광캐리어 발생기)

  • Kim, W.K.;Yang, W.S.;Lee, H.M.;Lee, H.Y.;Jeong, W.J.;Kwon, S.W.
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.181-185
    • /
    • 2006
  • A novel 60GHz optical carrier generator with a polarization domain-inverted structure is suggested and is demonstrated. The two arms of the Mach-Zehnder optical waveguide are periodically poled for quasi-phase velocity matching between the optical wave at 1550nm and the RF wave at 30 GHz. The center frequency of band-pass modulation and the 3 dB bandwidth of the fabricated modulator were measured to be 30.3 GHz and 5.1 GHz, respectively. Sub-carriers with the frequency difference of 60GHz waeregenerated under appropriate DC biac voltage application while the carrier was suppressed to lead to the power ratio between the modulated sub-carrier and the suppressed fundamental carrier of 28 dB, which proves that double sideband- suppressed carrier(DSB-SC) operation can be realized by the suggested single device.

A Study on Water Uptake Behavior and Properties of Pervaporation PVA Membrane (투과증발 PVA 분리막의 물 흡수 거동 및 물성 연구)

  • 김광제;박인준;김동권;이수복
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.74-80
    • /
    • 1995
  • Asymmetric poly(vinyl alcohol) (PVA) membranes were prepared by varying the precipitation conditions of the phase inversion technique, and the influences of precipitation conditions on the water uptake of the membrane were investigate. The degree of water uptake of the membrane increased and reached a certain maximum value, as the precipitation time increased. However, it decreded after that. As the precipition temperauure became lower, the degree of water uptake increased more or less. The addition of a nonionic surfactant to the precipitaon solution was effective reducing the precipitation time by lowering the surface tension of the precipitation solution, but ig didn't change the maximum value of its own degree of water uptake. In addition, the relationship between the degree of water uptake and the separation characteristics and mechanical properies of the membrane were investigated. The selectivity factor of the membrane for pervaperation separation decreased, but the permeate flux increased, respectively, with increasing the degree of water uptake. The tensile strength and elongation of the membrane, respectively, increased to a maximum value with increasing the degree of water uptake, and then decreased abtuptly.

  • PDF

A Study on the Preparation and Characterization of Sulfonated PS/PVdF Composite Membranes (술폰화 폴리스틸렌/폴리비닐리덴플로라이드 복합막의 제조 및 특성에 관한 연구)

  • Hong, Young-Taik;Jung, Yeon-Gu;Park, Hyung-Su;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.286-293
    • /
    • 2006
  • Porous asymmetric membranes based on PVdF as a nascent membrane were prepared by using a phase inversion method. PVdF ion conductive composite membranes were finally made by introducing $SO_3{^-}$ from sulfuric acid after cross-linked PS with various DVB contents in the pores of PVdF. Final PVdF composite membranes were characterized by FTIR, SEM, EDS to verify $SO_3{^-}$. It was revealed that the solvent contents and ion exchange capacity (IEC) decreased with increase of the degree of cross-linking. As the degree of crosslink increases both the electric conductivity and methanol permeability decreased, which was showing the better values than Nafion 117. When DVB content was 8%, its electric conductivity ($5.58{\times}10^{-5}S/cm$) was similar to Nafion 117 ($6.03{\times}10^{-5}S/cm$). But the lower methanol permeability ($1.0{\times}10^{-6}cm^2/sec$) than that of Nafion 117 was obtained.