DOI QR코드

DOI QR Code

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman (Chem. Eng. & Pilot Plant Dept., Eng. Research Division, National Research Center) ;
  • Ali, Sahar (Chem. Eng. & Pilot Plant Dept., Eng. Research Division, National Research Center) ;
  • Abdalla, Heba (Chem. Eng. & Pilot Plant Dept., Eng. Research Division, National Research Center) ;
  • Saied, Marwa (Chem. Eng. & Pilot Plant Dept., Eng. Research Division, National Research Center)
  • Received : 2014.06.16
  • Accepted : 2015.12.24
  • Published : 2016.01.25

Abstract

Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

Keywords

References

  1. Ali, S.S. and Abdallah, H. (2012), "Development of PES/CA Blend RO Membrane for Water Desalination", International Review of Chemical Engineering (I.RE.CH.E.), 4(3), 1755 p.
  2. Aroua, M.K., Zuki, F.M. and Sulaiman, N.M. (2007), "Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration", J. Hazard. Mater., 147(3), 752-758. https://doi.org/10.1016/j.jhazmat.2007.01.120
  3. Barakat, M.A. (2011), "New trends in removing heavy metals from industrial wastewater", Arab. J. Chem., 4(4), 361-377. https://doi.org/10.1016/j.arabjc.2010.07.019
  4. Bessbousse, H., Verchere, J.-F. and Lebrun, L. (2012), "Characterisation of metal-complexing membranes prepared by the semi-interpenetrating polymer networks technique. Application to the removal of heavy metal ions from aqueous solutions", Chem. Eng. J., 187, 16-28. https://doi.org/10.1016/j.cej.2011.12.079
  5. Bojic, A.L., Bojic, D. and Andjelkovic, T. (2009), "Removal of $Cu^{2+}$ and $zn^{2+}$ from model waste waters by spontaneous reduction-coagulation process in flow conditions", J. Hazard. Mater., 168(2-3), 813-819. https://doi.org/10.1016/j.jhazmat.2009.02.096
  6. Bouzid, J., Elouear, Z., Ksibi, M., Feki, A. and Montiel, A. (2008), "A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes", J. Hazard. Mater., 152(2), 838-845. https://doi.org/10.1016/j.jhazmat.2007.07.092
  7. Chan, K.H., Wong, K.H., Idris, A. and Yusof, N.M. (2015), "Modification of PES membrane by PEGcoated cobalt doped iron oxide for improved Cu(II) removal", J. Ind. Eng. Chem., 27, 283-290. DOI: http://dx.doi.org/10.1016/j.jiec.2015.01.002
  8. Chedly, T., Sugihhartati, D.-R. and Nidal, H. (2012), "The removal of copper in water using manganese activated saturated and unsaturated sand filters", Chem. Eng. J., 209, 334-344. https://doi.org/10.1016/j.cej.2012.08.013
  9. Chen, Z., Deng, M., Chen, Y., He, G., Wu, M. and Wang, J. (2004), "Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications", J. Membr. Sci., 235(1-2), 73-86. https://doi.org/10.1016/j.memsci.2004.01.024
  10. Chen, Q., Luo, Z., Hills, C., Xue, G. and Tyrer, M. (2009), "Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide", Water Res., 43(10), 2605-2614. https://doi.org/10.1016/j.watres.2009.03.007
  11. Cheng, Z., Liu, X., Han, M. and Ma, W. (2010), "Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution", J. Hazard.Mater., 182(2-3), 408-415. https://doi.org/10.1016/j.jhazmat.2010.06.048
  12. Dabrowski, A., Hubicki, Z., Podkoscielny, P. and Robens, E. (2004), "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method", Chemosphere, 56(2), 91-106. https://doi.org/10.1016/j.chemosphere.2004.03.006
  13. Daraei, P., Madaeni, S., Ghaemi, N., Salehi, E.n, AliKhadivi, M., Moradian, R. and Astinchap, B. (2012), "Novel polyethersulfone nano-composite membrane prepared by $PANI/Fe_3O_4 nano-particles with enhanced performance for Cu(II)removal rom water", J. Membr. Sci., 415-416, 250-259. https://doi.org/10.1016/j.memsci.2012.05.007
  14. Denizli, A., Say, R., Leyman, S. and Yakup, M. (2000), "Adsorption of heavy metal ions onto ethylene diamine-derived and Cibacron Blue F3GA-incorporated micro-porous-poly(2-hydroxyethyl methacrylate) membranes", React. Funct. Polym., 43(1-2), 17-24. https://doi.org/10.1016/S1381-5148(98)00089-3
  15. Dong, X.C., Cao, D., Shi, Y. and Fu, Z.F. (2013), "Fast Removal of Cu (II) from Aqueous Solutions by PET Nanofibrous Membrane Modified with Acryamide", Advanced Materials Research, 750-752, 1343-13460. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1343
  16. Fu, F. and Wang, Q. (2011), "Removal of heavy metal ions from wastewaters: A review", J. Environ. Manage., 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
  17. Ghaee, A., Shariaty-Niassar, M., Barzin, J. and Matsuura, T. (2010), "Effects of chitosan membrane morphology on copper ion adsorption", Chem. Eng. J., 165(1), 46-55. https://doi.org/10.1016/j.cej.2010.08.051
  18. Hamadi, N.K., Chen, X.D., Farid, M.M. and Lu, M.G.Q. (2001), "Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust", Chem. Eng. J. 84(2), 95-105. https://doi.org/10.1016/S1385-8947(01)00194-2
  19. Han, W., Chunxiu, L. and Renbi, B. (2007), "A novel method to prepare high chitosan content blend hollow fiber membranes using a non-acidic dope solvent for highly enhanced adsorptive performance", J. Membr. Sci., 302(1-2), 150-159. https://doi.org/10.1016/j.memsci.2007.06.039
  20. Jarup, L. (2003), "Hazards of heavy metal contamination", Br. Med. Bull., 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032
  21. Kislik, V.S. (2012), "Examples of application of solvent extraction techniques in chemical, radiochemical, biochemical, pharmaceutical, analytical separations, and wastewater treatment", In: Solvent Extraction, Elsevier, pp. 185-314.
  22. Kurniawan, T.A., Chan, G.Y.S., Lo, W.H. and Babel, S. (2006), "Physico-chemical treatment techniques for wastewater laden with heavy metals", Chem. Eng. J., 118(1-2), 83-98. https://doi.org/10.1016/j.cej.2006.01.015
  23. Lai, Y. and Chen, R.-Y. (1992), "Preparation and properties of vinyl acetate-grafted nylon 6 membranes by using homo-grafting method", J. Membr. Sci., 66(2-3), 169-178. https://doi.org/10.1016/0376-7388(92)87007-K
  24. Liu, C. and Bai, R. (2006), "Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes", J. Membr. Sci., 284(1-2), 313-322. https://doi.org/10.1016/j.memsci.2006.07.045
  25. Mohammadali, S. and Toraj, M. (2009), "High Salinity water desalination using VMD", Chem. Eng. J., 149(1-3), 191-195. https://doi.org/10.1016/j.cej.2008.10.021
  26. Muthukrishnan, M. and Guha, B.K. (2006), "Heavy metal separation by using surface modified nanofiltration membrane", Desalination, 200(1-3), 351-353. https://doi.org/10.1016/j.desal.2006.03.371
  27. Oliver, M.A. (1997), "Soil and human health: A review", Eur. J. Soil Sci., 48(4), 573-592. https://doi.org/10.1046/j.1365-2389.1997.00124.x
  28. Pedersen, A.J. (2003), "Characterization and electrodialytic treatment of wood combustion fly ash for the removal of cadmium", Biomass Bioenergy, 25(4), 447-458. https://doi.org/10.1016/S0961-9534(03)00051-5
  29. Reddy, A.V.R. and Patel, H.R. (2008), "Chemically treated polyethersulfone/polyacrylonitrile blend ultrafiltration membranes for better fouling resistance", Desalination, 221(1-3), 318-323. https://doi.org/10.1016/j.desal.2007.01.089
  30. Salehi, E., Madaeni, S.S., Rajabi, L., Vatanpour, V., Derakhshan, A.A., Zinadini, S., Ghorabi, Sh. and Monfared, H.A. (2012), "Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified withamino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: Preparation, characterization, adsorption kinetics and thermodynamics", Sep. Purif. Technol., 89, 309-319. https://doi.org/10.1016/j.seppur.2012.02.002
  31. Senna, M.H., Abdel-Moneam, K., Gamal, A. and Alarifi, A. (2013), "Preparation of membranes based on high-density polyethylene graft copolymers for phosphate anion removal", J. Ind. Eng. Chem., 19(1), 48-55. https://doi.org/10.1016/j.jiec.2012.06.022
  32. Singh, A., Sharma, R.K., Agrawal, M. and Marshall, F.M. (2010), "Health risk assessment of heavy metals via dietary intake of food stuffs from the wastewater irrigated site of a dry tropical area of India", Food Chem. Toxicol., 48(2), 611-619. https://doi.org/10.1016/j.fct.2009.11.041
  33. Steenkamp, G.C., Keizer, K., Neomagus, H.W.J.P. and Krieg, H.M. (2002), "Copper (II) removal from polluted water with alumina/chitosan composite membranes", J. Membr. Sci., 197(1-2), 147-156. https://doi.org/10.1016/S0376-7388(01)00608-1
  34. Sun, R., Ottosen, M., Jensen, E. and Kirkelund, M. (2013), "Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation", Electrochimica Acta, 107, 187-193. https://doi.org/10.1016/j.electacta.2013.05.138
  35. Wang, S.B., Li, L. and Zhu, Z.H. (2007), "Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater", J. Hazard. Mater., 139(2), 254-259. https://doi.org/10.1016/j.jhazmat.2006.06.018
  36. Zheng, Q., Wang, P., Yang, Y. and Cui, D. (2006), "The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane", J. Membr. Sci., 286(1-2), 7-11. https://doi.org/10.1016/j.memsci.2006.09.033
  37. Zhou, L.-C., Li, Y.-F., Bai, X. and Zhao, G.-H. (2009), "Use of microorganisms immobilized on composite polyurethane foam to remove Cu(II) from aqueous solution", J. Hazard. Mater., 167(1-3), 1106-1113. https://doi.org/10.1016/j.jhazmat.2009.01.118

Cited by

  1. Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal vol.9, pp.4, 2018, https://doi.org/10.12989/mwt.2018.9.4.211
  2. Effect of Sodium Dodecyl Sulfate (SDS) on Polysulfone/Zeolite membrane for the removal of copper ions vol.796, pp.None, 2016, https://doi.org/10.1088/1757-899x/796/1/012053
  3. Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal vol.11, pp.2, 2020, https://doi.org/10.12989/mwt.2020.11.2.131
  4. Chitosan/Graphene Oxide/Nanocellulose Composites for Removal of Cu(II) and Pb(II) Ions in Aqueous Solution vol.63, pp.5, 2016, https://doi.org/10.1134/s0965545x21050084
  5. Recent Aspects in Membrane Separation for Oil/Water Emulsion vol.8, pp.20, 2016, https://doi.org/10.1002/admi.202100448
  6. Coordination of Lead (II) and Cadmium (II) Ions to Nylon 6/Flax Linum Composite as a Route of Removal of Heavy Metals vol.31, pp.12, 2021, https://doi.org/10.1007/s10904-021-02052-8