• Title/Summary/Keyword: Phase Inversion

Search Result 398, Processing Time 0.025 seconds

Biomechanical Analysis of Wearing Carbon Nanotube-Based Insole during Drop Landing (탄소나노튜브 인솔 착용에 따른 드롭 착지 동작의 생체역학적 분석)

  • Chae, Woen-Sik;Jung, Jae-Hu;Lee, Haeng-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • The purpose of this study was to determine the biomechanical effect of wearing carbon nanotube-based insole on cushioning and muscle tuning during drop landing. Twenty male university students(age: $21.2{\pm}1.5yrs$, height: $175.4{\pm}4.7cm$, weight: $70.2{\pm}5.8kg$) who have no musculoskeletal disorder were recruited as the subjects. Average axial strain, average shear strain, inversion angle, linear velocity, angular velocity, vertical GRF and loading rate were determined for each trial. For each dependent variable, a one-way analysis of variance(ANOVA) with repeated measures was performed to test if significant difference existed among different three conditions(p<.05). The results showed that Average axial strain of line 4 was significantly less in CNT compared with EVA and PU during IP phase. The average shear strain was less in CNT compared with EVA and PU during other phases. The inversion angle was increased in CNT compared with EVA and PU during all phase. In linear velocity, angular velocity, vertical GRF and loading rate, there were no significant difference between the three groups. This result seems that fine particle of carbon nanotube couldn't make geometric form which can absolve impact force by increasing density through eliminating voids of forms. Thus, searching for methods that keep voids of forms may play a pivotal role in developing of insole. This has led to suggestions of the need for further biomechanical analysis to these factors.

Formation of Poly(vinylidene difluoride) Membranes with Various Pore Sizes by a Phase Inversion Process and Membrane Performance of Aqueous and Non-aqueous Solution System (상전환법에 의한 다양한 기공크기를 갖는 폴리비닐리덴플루오라이드 막의 제조와 수계 및 비수계 용액 내에서의 막 성능)

  • Lee Kew-Ho;Kim In-Chul
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.22-33
    • /
    • 2005
  • Asymmetric PVDF membranes were prepared by the phase inversion from casting solutions containing PVDF, NMP as solvent and 1,4-dioxane, DGDE, acetone, or GBL as additives by immersing them in water. The effects of various additives on the casting solution properties, permeation properties, and membrane structures were investigated. Low miscibility of 1,4-dioxane, DGDE and acetone with the coagulant (water) compared with NMP resulted in reducing the membrane pore size. When DGDE is used as an additive, the pore size was reduced because of its incipient sharp interface formation in the water. GBL increased membrane pore size because of its polarity compared to that of NMP. The PVDF membranes with various pore sizes could be obtained by controlling the amount of additive. The effect of mixed solvent (aqueous and non-aqueous solution) on permeation through membrane was investigated. Not only solution viscosity but surface tension affected solvent permeation.

Preparation of Hydroxy Polyimde Membranes for Gas Separation by Phase Inversion Method (상전이법을 이용한 기체 분리용 Hydroxy Polyimide 막의 제조)

  • Woo, Seung-Moon;Choi, Jong-Jin;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • In this study, for preparation of gas separation membrane with high permeability, hydroxy polyimide was synthesized using 6FDA and APAF. Synthesis of HPI was confirmed by H-NMR and FT-IR, thermal property of membrane was characterized by Differential scanning calorimetric (DSC) and thermogravimetric analyzer (TGA). Especially, the synthesized HPI can possible to search conversion to PBO at $450^{\circ}C$. To obtain the membrane having high permeability, ternary system consist of polymer, solvent and non-solvent additive was introduced, asymmetric HPI flat sheet membrane was prepared by phase inversion method. Finally, the change of morphology with each component was observed through FE-SEM.

Compensation for Distorted RZ Signals in 8×40 Gbps WDM System with NZ-DSF using Modified MSSI (NZ-DSF를 갖는 8×40 Gbps WDM 시스템에서 개량된 MSSI 기법을 이용한 왜곡된 RZ 신호의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.205-212
    • /
    • 2006
  • In this paper, the numerical methods of searching the optimal position of optical phase conjugator (OPC) and the optimal dispersion coefficients of fiber sections are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to verify the availability of the proposed methods. It is confirmed that the compensation extents of the distorted 8-channel signals are improved within 2 dB power penalty by applying the induced optimal parameters into WDM system. It is also confirmed that two optimal parameters less related with the searching procedure of these optimal values, only if these depend on each other.

  • PDF

Synergistic Effects of UV Absorbance of Nanoemulsions Formed with Organic UV filters and Wax (유기자외선차단제와 왁스를 함유한 나노에멀젼의 자외선 흡광도의 상승효과)

  • Cho, Wan Goo;Cha, Young Kweon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • In this study, we investigated the effect on the increase of UV absorbance using a o/w nanoemulsion containing a blend of surfactants (Tween 80 and Span 80), an organic sunscreen, and wax. The particle size of nanoemulsion produced by PIC (Phase Inversion Composition), in Tween 80/Span 80 system containing candelilla wax was below 50 nm. As the concentration of Tween 80/Span 80/candelilla wax/organic UV filter was fixed at 4.5/0.5/3.0/2.0 wt%, and various organic sunscreens were added to the system, stable nanoemulsion was produced by Parsol MCX and Escalol 587, respectively. In addition, in the same system, when the ratio of Parsol MCX and candelilla wax was less than 2.0, a stable nanoemulsion was obtained. UV absorbance showed a high synergistic effect when Parsol MCX was used with candelilla wax.

Cerebrospinal fluid flow in normal beagle dogs analyzed using magnetic resonance imaging

  • Cho, Hyunju;Kim, Yejin;Hong, Saebyel;Choi, Hojung
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • Background: Diseases related to cerebrospinal fluid flow, such as hydrocephalus, syringomyelia, and Chiari malformation, are often found in small dogs. Although studies in human medicine have revealed a correlation with cerebrospinal fluid flow in these diseases by magnetic resonance imaging, there is little information and no standard data for normal dogs. Objectives: The purpose of this study was to obtain cerebrospinal fluid flow velocity data from the cerebral aqueduct and subarachnoid space at the foramen magnum in healthy beagle dogs. Methods: Six healthy beagle dogs were used in this experimental study. The dogs underwent phase-contrast and time-spatial labeling inversion pulse magnetic resonance imaging. Flow rate variations in the cerebrospinal fluid were observed using sagittal time-spatial labeling inversion pulse images. The pattern and velocity of cerebrospinal fluid flow were assessed using phase-contrast magnetic resonance imaging within the subarachnoid space at the foramen magnum level and the cerebral aqueduct. Results: In the ventral aspect of the subarachnoid space and cerebral aqueduct, the cerebrospinal fluid was characterized by a bidirectional flow throughout the cardiac cycle. The mean ± SD peak velocities through the ventral and dorsal aspects of the subarachnoid space and the cerebral aqueduct were 1.39 ± 0.13, 0.32 ± 0.12, and 0.76 ± 0.43 cm/s, respectively. Conclusions: Noninvasive visualization of cerebrospinal fluid flow movement with magnetic resonance imaging was feasible, and a reference dataset of cerebrospinal fluid flow peak velocities was obtained through the cervical subarachnoid space and cerebral aqueduct in healthy dogs.

Tutorial Review on Membrane Classification and Preparation Methods (멤브레인 분류 및 제조 방법에 대한 튜토리얼 총설)

  • Moon, Seung Jae;Kim, Young Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.198-208
    • /
    • 2022
  • Membrane can selectively separate various substances such as organic substances, liquids, solutes, vapors, gases, ions or electrons according to the separation technology and various uses. Membranes are largely divided into symmetric membranes and asymmetric membranes, and classified into porous and nonporous structure depending on the presence or absence of pores. Also, the interface of the membrane may be molecularly uniform, or chemically or physically non-uniform. Preparation techniques include melt extrusion, stretching, template leaching, track-etching, solution casting, phase inversion, and solution coating method. The prepared membrane can be applied to various applications such as microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation and energy fields. This review provides a tutorial on how to prepare membranes according to the classification and types.

Characterization of Emulsion Properties for D-limonene (D-리모넨 오일의 유화특성)

  • 하윤식;장윤호;문현수;이정경;서무룡
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.875-881
    • /
    • 1998
  • Microemulsion is prepared by the method of phase inversion emulsification with d-limonene that is environmental friendly substance and nontoxic to human body as dispersed phase. Emulsifier used for preparation of microemulsion is nonionic surfactants, polyoxyethylene nonylphenyl ether. Stability of prepared microemulsion was estimated by the various method of ξ-potential, hydrodynamic diameter and electric conductivity. When d-limonene is emulsified by NP series, microemulsion is most stable and narrowly distributed at HLB value of 12.3(either one emulsifier or mixed emulsifiers). Stability of microemulsion is increased as the amount of emulsifiers is increased at same HLB value of 12.3. In the case of using the same amount of emulsifiers, number of produced micelle are relatively large as hydrodynamic diameter is small. Therefore, the state of microemulsion is stable and the electric conductivity is increased. One can determine that higher electric conductivity value means that microemulsion has more micelles and is more stable.

  • PDF

Solid-state NMR Studies of Miscibility and Morphology in Blends of Bisphenol-A type Polycarbonate and Poly (ester-ether) Elastomer

  • Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.19-28
    • /
    • 2001
  • Miscibility and morphology in blends of bisphenol-A type polycarbonate and poly (ester-ether) elastomer with different compositions are studied by solid-state NMR spectroscopy. $^{13}$ C Solid-state NMR of CP/MAS/TOSS/DD, CP/MAS/DD, inversion recovery CP/MAS/DD, and 2D rotor driven spin diffusion techniques are used to identify the miscibility, morphology, and transesterification in blends. The blends of PC /BT elastomer with 15% to 42% of soft segment seem to be single phase miscible mixing and those of PC/PBT and PC/PBT elastomer with 62% of soft segment are cocontinuous two phase immiscible mixing. No significant transesterification reactions are observed in blends with different compositions.

  • PDF

Blue Light Generation in a Quasi-Phase-Matched $LiTaO_3$ Optical Waveguide (준위상정합된 리튬탄탈레이트 광도파로에서의 청색 광파 생성)

  • 이상윤;신상영;진용성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.173-183
    • /
    • 1995
  • Blue light of 0.15mW at 417.6nm is generated in a quasi-phase-matched LITaO$_{3}$ optical waveguide. A new heat-treatment technique using a metal-oxide mask is proposed to fabricate the periodic domain-inverted grating with less degraded optical properties. The mask promotes the proton indiffusion by inhibition of the proton outdiffusion during the heat treatment. It reduces the amount of the initial proton exchange for the domain inversion and prevents the formation of crystal defects on the surface accompanied by the proton outdiffusion. Consequently, it minimizes the degradation of nonlinear coefficient and scattering loss caused by the initial proton exchange.

  • PDF