Browse > Article

Preparation of Hydroxy Polyimde Membranes for Gas Separation by Phase Inversion Method  

Woo, Seung-Moon (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University)
Choi, Jong-Jin (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University)
Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University)
Publication Information
Membrane Journal / v.22, no.1, 2012 , pp. 62-71 More about this Journal
Abstract
In this study, for preparation of gas separation membrane with high permeability, hydroxy polyimide was synthesized using 6FDA and APAF. Synthesis of HPI was confirmed by H-NMR and FT-IR, thermal property of membrane was characterized by Differential scanning calorimetric (DSC) and thermogravimetric analyzer (TGA). Especially, the synthesized HPI can possible to search conversion to PBO at $450^{\circ}C$. To obtain the membrane having high permeability, ternary system consist of polymer, solvent and non-solvent additive was introduced, asymmetric HPI flat sheet membrane was prepared by phase inversion method. Finally, the change of morphology with each component was observed through FE-SEM.
Keywords
hydroxy polyimide; flat sheet membrane; morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. C. Gregor, G. B. Tanny, E. Shchori, and Y. Kenigsberg, "SUNBEAM PROCESS™ Microporous Membranes; A high performance barrier for protective clothing", J. Coated Fabrics, 18, 26 (1988).
2 V. D. Alves, B. Koroknai, K. Belafi-Bako, and I. M. Coelhoso, "Using membrane contactors for fruit juice concentration", Desalination, 162, 263 (2003).
3 R. Nagel and T. Will, "Membrane processes for water treatment in the semiconductor industry", Ultrapure Water, 16, 35 (1999).
4 B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications-a review", J. Membr. Sci., 259, 10 (2005).   DOI   ScienceOn
5 W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993).   DOI   ScienceOn
6 H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007).   DOI   ScienceOn
7 K. Nakagawa, "Optical anisotropy of polyimide", J. Appl. Polym. Sci., 41, 2049 (1990).   DOI
8 C. E. Hoyle and E. T. Anzures, "Photodegradation of polyimides. I. A spectral, viscometric, chromatographic, and weight loss investigation of polyimides based on a hexafluorinated dianhydride", J. Appl. Polym. Sci., 43, 1 (1991).   DOI
9 C. Ryu, J. Lee, T. Eom, J. Baek, H. Eom, and C. Yi, "$CO_{2}$ capture from flue gas using dry regenerable sorbents", National Energy Technology Laboratory, Morgantown, WV (2004).
10 S. Lee, H. Chae, S. Lee, B. Choi, C. Yi, J. Lee, C. Ryu, and J. C. Kim, "Development of regenerable MgO-Based Sorbent Promoted with K2CO3 for $CO_{2}$ Capture at Low Temperatures", Enciron. Sci. Technol., 42, 2736 (2008).   DOI   ScienceOn
11 C. Yi, S. Jo, T. Seo, J. Lee, and C. Ryu, "Continuous operation of the potassium-based dry sorbent $CO_{2}$ capture process with two fluidized-bed reactors", Int. J. Greenh, Gas, Con., 1, 31 (2007).   DOI   ScienceOn
12 X. Ma, X. Wang, and C. Song, "The second generation of nano-porous molecular-basket sorrbent fo $CO_{2}$ capture from flue gas", The 25th Annual International Pittsburgh Coal Conference, Pittsburgh, U.S.A. (2008).
13 K. Adamskaa, A. Voelkela, and K. Hebergerb, "Selection of solubility parameters for characterization of pharmaceutical excipients", J. Chromatogr. A., 1171, 90 (2007).   DOI   ScienceOn
14 K. Adamska and A. Voelkel, "Hansen solubility parameters for polyethylene glycols by inverse gas chromatography", J. Chromatogr. A., 1132, 260 (2006).   DOI   ScienceOn
15 D. W. van Krevelen, "Properties of polymer", pp. 55, Elsevier, Amsterdam, Netherlands (1990).
16 A. Guner, "The algorithmic calculations of solubility parameter for the determination of interactions in dextran/certain polar solvent systems", Eur. Polym. J., 40, 1587 (2004).   DOI   ScienceOn
17 D. T. Clausi1 and W. J. Koros, "Formation of defect-free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000).   DOI   ScienceOn
18 J. Han, D. Yang, S. Zhang, X. Liu, Z. Zhang, and X. Jian, "Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane", J. Membr. Sci., 365, 311 (2010).   DOI   ScienceOn
19 F. Lin, D. Wang, and J. Lai, "Asymmetric TPX membranes with high gas flux", J. Membr. Sci., 110, 25 (1996).   DOI   ScienceOn
20 K. Chun, S. Jang, H. Kim, Y. Kim, H. Han, and Y. Joe, "Effects of solvent on the pore formation in asymmetric 6FDA-4,4' ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors", J. Membr. Sci., 169, 197 (2000).   DOI   ScienceOn
21 M. L. Yeow, Y. T. Liu, and K. Li, "Morphological Study of Poly(vinylidene fluoride) Asymmetric Membranes: Effects of the Solvent, Additive, and Dope Temperature", J. Appl. Polym. Sci., 92, 1782 (2004).   DOI   ScienceOn
22 M. A. Aroon, A. F. Ismail, M. M. Montazer-Rahmati, and T. Matsuura, "Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent", Sep. Purif. Technol., 72, 194 (2010).   DOI   ScienceOn