• Title/Summary/Keyword: Phase III design

Search Result 58, Processing Time 0.025 seconds

An Economic Assessment for APR+ Standard Detailed Design Developing Phase (APR+ 표준상세설계 개발단계에서의 경제성 평가)

  • Ha, Gak-Hyeon;Suh, Yong-Pyo;Kim, Man-Won;Kim, Sung-Choon;Park, Sun-Eung
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.292-300
    • /
    • 2012
  • KHNP CRI has been developing APR+ nuclear power plant since 2007, which is GEN III+ model with 4,361 MWth capacity. To develop safer and more economical nuclear power plant than APR1400, we studied domestic and foreign nuclear power plants under construction. We also reviewed nuclear power plants which are appropriate for domestic construction in Korea and also for export. Economic assessments were made twice during the second phase of standard detailed design of the plant. The result of the second phase of economic analysis for APR+ standard detailed design showed that APR+ N-th plant was 24.6% more economical than coal-fired 1,000MW power plant, and was evaluated to be competitive enough in global market for construction of the nuclear power plant.

Slope Failure Predicting Method Using the Monitoring of Volumetric Water Content in Soil Slope (흙사면의 체적함수비 계측을 통한 사면파괴 예측기법 개발)

  • Kim Man-Il;Nishigaki Makoto
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.135-143
    • /
    • 2006
  • This study presents the results of a series of laboratory scale slope failure experiments aimed at clarifying the process and the condition leading to the initiation of rainfall-induced slope failures. For the evaluation of hydrologic response of the model slopes in relation the process of failure initiation, measurements were focused on the changes in volumetric water content during the initiation process. The process leading to failure initiation commences by the development of a seepage face. It appears reasonable to conclude that slope failures are a consequence of the instability of seepage area formed at the slope surface during rainfall period. Therefore, this demonstrates the importance of monitoring the development seepage area for useful prediction about the timing of a particular failure event. The hydrologic response of soil slopes leading to failure initiation is characterized by three phases (phase I, II and III) of significant increase in volumetric water content in association with the ingress of wetting front and the rise of groundwater level within the slope. The period of phase III increase in volumetric water content can be used to initiate advance warning towards a failure initiation event. Therefore, for the concept outlined above, direct and continuous monitoring of the change in volumetric water content is likely to provide the possibility for the development of a reliable and effective means of predicting the occurrence of rainfall-induced slope failures.

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

Development of the Approximate Cost Estimating Model Using Statistical Inference for PSC Box Girder Bridge Constructed by the Incremental Launching Method (통계적 기법을 활용한 ILM압출공법 교량 상부공사 개략공사비 산정모델 개발 연구)

  • Kim, Sang-Bum;Cho, Ji-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.781-790
    • /
    • 2013
  • This research focuses on development of the conceptual cost estimation models for I.L.M box girder bridge. The current conceptual cost estimation for public construction projects is dependent on governmental average unit price references which has been regarded as inaccurate and unreliable by many experts. Therefore, there have been strong demands for developing a better way of conceptual cost estimating methods. This research has proposed three different conceptual cost estimating method for a P.S.C. girder bridge built with the I.L.M method. Model (I) attempts to seek the proper breakdown of standard works that are accountable for more than 95 percentage in total cost and calculates the amount of standard work's materials from the standard section and volume of I.L.M box girder bridge. Model (II) utilizes a correlation analysis (coefficient over 0.6 or more) between breakdown of standard works and input data that would be considered available information in preliminary design phase. Model(III) obtains conceptual estimating through multiple-regression analysis between the breakdown of standard works and all of input data related to them. In order to validate the clustering of coverage in the preliminary design phase, the variation of I.L.M cost coverage from multiple-regression analysis[model(III)] has been investigated which result in between -3.76% and 11.79%, comparing with AACE(Association for the Advancement of Cost Engineering) which informs its variation between -5% and +15% in the design phase. The model proposed from this research are envisioned to be improved to a great distinct if reliable cost date for P.S.C. girder bridges can be continually collected with reasonable accuracies.

ON MEASURING THE WELDING TEMPERATURE OF CONNECTOR

  • Deng Jyh-jeng
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.361-377
    • /
    • 1998
  • The measurement of welding temperature of connector is usually performed with an infra red temperature gauge. However, the factors, which influence the temperature measurement, are rarely known. This research used the welding temperature measurement of the connector as an example, applying the experimental design, in two-phase experiments, to search the affecting factors. In phase-I experiment, we used a resolution III, seven-factor fractional factorial design with two levels for each factor. The result showed that none of the factor was significant in affecting the welding temperature when the type I error ${\alpha}$ was 0.05. Next, we did the phase-II factorial experiment with three factors and each factor had three levels. The experiment showed the experimental time was significant in affecting the temperature measurement when the type I error ${\alpha}$ was 0.05. Further Duncan's multiple range tests on the second experimental data showed that the later the experimental time, the weaker the light intensity could have on the temperature measurement and the average of the highest temperatures was lower. Moreover, the later the experimental time, the smaller was the variance of the temperature measurement and the difference between the averages of the highest and the lowest temperatures was also lower.

  • PDF

Effect of Carbohydrate Sources in Phase I and Phase II Pig Starter Diets

  • Kim, I.B.;Allee, G.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1419-1424
    • /
    • 2001
  • Previous research in our laboratory has demonstrated the importance of lactose in phase I and II pig starter diets. Two experiments were conducted to evaluate the use of a carbohydrate by-product (food by-products) as a replacement for lactose. In Exp. I, 120 weaned pigs ($14{\pm}2d$ and 5.65kg) were allotted in a randomized complete block design (RCBD) to 10 replications with four pigs per pen. This experiment evaluated three carbohydrate sources (lactose, carbohydrate by-product, and 50-50 blend of the carbohydrate by-product and lactose). The carbohydrate sources were added at 26% in the phase I diets and 15% in the phase II diets. Phase I diets contained 7.5% spray dried plasma protein (SDP). The phase I diets were fed from d 0 to 14 and the phase II diets from d 15 to 28. There were no significant differences between carbohydrate sources on pig performance in phase I. However, during phase II pigs fed the diet with lactose had an improved gain/feed ratio (G/F) (p=0.06) compared to pigs fed the carbohydrate by-product. For the entire 28 d trial ADG, ADFI and G/F were similar for the 50-50 blend and those fed lactose. Total replacement of lactose with the carbohydrate byproduct resulted in a reduced G/F (p=0.09). Exp. 2 used 100 weaned pigs ($17{\pm}2d$ and 4.75kg) with five replications with five pigs per pen. This experiment evaluated four carbohydrate treatments (lactose, carbohydrate by-products, 50-50 blend, and corn). All phase I diets contained 3.5% SDP with the carbohydrate sources included at 15%, and were fed d 0 to 14. The phase II diets contained 7.5% of the carbohydrate sources and were fed d 15 to 27. A common phase III diet was fed d 28 to 42. During all phases pigs fed com tended to have a lower ADG than pigs fed the other carbohydrate sources with the 50-50 blend resulting in the highest ADG. The results of both experiments suggest that this carbohydrate by-product can replace at least 50% of the lactose in phase I and phase II pig starter diets.

Environmental Impact Evaluation of Virgin Pulp Using Life Cycle Assessment Methodology (LCA기법을 이용한 천연펄프의 환경 영향 평가)

  • 김형진;조병묵;황용우;박광호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Life Cycle Assessment for the pulp, which is mainly used as the raw material of fine paper, base paper for food packaging and paper cup, has been carried out in this study to consider environmental aspects by quantifying the environmental emission and to evaluate its environmental impact potential. The system boundary was selected from cradle to gate stage(raw material acquisition, transportation of raw material and product manufacturing) of the product. Environmental impact was divided into 8 categories considering Korean situation: abiotic resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, ecotoxicity and human toxicity. In Life Cycle Impact Assessment(LCIA) methodology phase, Ecopoint, Eco-indicator 95 and Korean eco-indicator were used and the results carried out by each methodology were compared. The results from this study were also compared with those of foreign study to verify the reliability of the results. The results of the study could be utilized as the basic data for Environmental Management System(EMS), Design for Environment(DfE) and Type III eco-labeling in the paper and paper-related industry.

A Economic Evaluation for APR+ Standard Design (APR+ 표준설계에 대한 경제성 분석)

  • Ha, Gag-Hyeon;Lee, Jae-Ho
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • KHNP CRI has developed APR+ nuclear power plant since 2007, which is GEN III+ model with 1500 MWe capacity. To develop safer nuclear power plant than APR1400, we investigated advanced design features of ALWR being constructed in Korea and being developed/constructed in foreign countries. We applied the advanced design features and lessons learned from Fukushima accident to develop APR+ standard design suitable for both domestic construction and overseas construction business. One economic assessments have performed during safety design improvement phase(2013.1 ~ 2015.12) of APR+. The result of the economic analysis for APR+ safety inhancement design showed that APR+ N-th plant is about 39.2% more economical than coal-fired 1,000MW power plant. Also APR+ plant is more cost advantage over foreign advanced nation ALWRs.

A Generating Cost Evaluation of APR+ Standard Design (APR+ 표준설계 발전원가 분석)

  • Ha, Gag-Hyeon;Kim, Sung-Hwan;Lee, Jae-Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.236-239
    • /
    • 2014
  • KHNP CRI has been developing APR+ nuclear power plant since 2007, which is GEN III+ model with 1500 MWe capacity. To develop safer and more economical nuclear power plant than APR1400, we investigated advanced design features of ALWR(advanced light water reactor) being constructed in Korea and being developed/constructed in foreign countries. We applied the advanced design features and lessons learned from Fukushima accident to develop APR+ standard design suitable for both domestic construction and overseas construction business. Three economic assessments have performed during standard design phase of APR+. The result of the 3th(final) economic analysis for APR+ standard design showed that APR+ N-th plant was about 23% more economical than coal-fired 1,000MW power plant.

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.