• Title/Summary/Keyword: Phase Field model

Search Result 575, Processing Time 0.028 seconds

Temperature-dependent multi-phase-lags theory on a magneto-thermoelastic medium with microtemperatures

  • Samia M. Said
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.489-497
    • /
    • 2024
  • A temperature-dependent generalized thermoelasticity is constructed in the context of a new consideration of the multi-phase-lags model. The theory is then adopted to study wave propagation in anisotropic homogenous generalized magneto-thermoelastic medium under the influence of gravity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem are solved by using normal mode analysis. The numerical quantities of physical interest are obtained and depicted graphically. Some comparisons of the results are shown in figures to study the effects of the magnetic field, temperature discrepancy, and the gravity field.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.201-220
    • /
    • 2016
  • A general model of equations of the two-temperature theory of generalized thermoelasticity is applied to study the wave propagation in a fiber-reinforced magneto-thermoelastic medium in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. The material is a homogeneous isotropic elastic half-space. The exact expression of the displacement components, force stresses, thermodynamic temperature and conductive temperature is obtained by using normal mode analysis. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results of the two theories in the absence and presence of a magnetic field as well as a two-temperature parameter. A comparison is also made between the results of the two theories in the absence and presence of reinforcement.

Simplified 2-D Analytical Model for Winding Loss Analysis of Flyback Transformers

  • Zhang, Junming;Yuan, Wei;Zeng, Hulong;Qian, Zhaoming
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.960-973
    • /
    • 2012
  • The winding loss analysis of a flyback transformer is difficult and ambiguous because the primary side current and the secondary side current differs both in shape and phase, especially for DCM (Discontinuous Conduction Mode) operation. Meanwhile, the fringing field caused by the air gaps further makes the traditional 1-D loss analysis model not directly applicable. The paper gives a thorough investigation into the phase shift of winding currents, which indicates that the phase shift of the high order harmonics is still close to $180^{\circ}$ out-of-phase. Based on the analysis, a simplified 2-D winding loss analytical model for flyback transformers considering the effects of low order harmonics is proposed. By neglecting the y components of the fringing field, the proposed model has an acceptable accuracy and a simple form that is similar to the conventional 1-D model. The power loss calculated with the proposed analysis model is verified by FEA (Finite Element Analysis) simulations and experimental results.

Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model

  • Alharbi, Amnah M.;Othman, Mohamed I.A.;Al-Autabi, Al-Anoud M.Kh.
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.579-590
    • /
    • 2020
  • This paper's objective is to investigate the effect of gravity on a micropolar thermoelastic medium with voids. The problem is assessed according to the three-phase-lag model. An analysis of the resulting non-dimensional displacement, temperature variation, and internal stress of the study material is carried out and presented graphically. The non-dimensional displacement, temperature, micro-rotation, the change in the volume fraction field and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by different theories for different values of gravity, the phase-lag of the heat flux and the phase-lag of the temperature gradient. The numerical results reveal that gravity and relaxation times have a significant influence on the distribution of the field quantities. Some notable insights of interest are deduced from the investigation.

Effect of magnetic field and gravity on thermoelastic fiber-reinforced with memory-dependent derivative

  • Mohamed I.A. Othman;Samia M. Said;Elsayed M. Abd-Elaziz
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.101-118
    • /
    • 2023
  • The purpose of this paper is to study the effects of magnetic field and gravitational field on fiber-reinforced thermoelastic medium with memory-dependent derivative. Three-phase-lag model of thermoelasticity (3PHL) is used to study the plane waves in a fiber-reinforced magneto-thermoelastic material with memory-dependent derivative. A gravitating magneto-thermoelastic two-dimensional substrate is influenced by both thermal shock and mechanical loads at the free surface. Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique with the eigenvalue approach technique. A numerical example is considered to illustrate graphically the effects of the magnetic field, gravitational field and two types of mechanical loads(continuous load and impact load).

Phase-Field Modelling of Zinc Dendrite Growth in ZnAlMg Coatings

  • Mikel Bengoetxea Aristondo;Kais Ammar;Samuel Forest;Vincent Maurel;Houssem Eddine Chaieb;Jean-Michel Mataigne
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.93-103
    • /
    • 2024
  • In the present work, a phase-field model for dendritic solidification is applied to hot-dip ZnAlMg coatings to elucidate the morphology of zinc dendrites and the solute segregation leading to the formation of eutectics. These aspects define the microstructure that conditions the corrosion resistance and the mechanical behaviour of the coating. Along with modelling phase transformation and solute diffusion, the implemented model is partially coupled with the tracking of crystal orientation in solid grains, thus allowing the effects of surface tension anisotropy to be considered in multi-dendrite simulations. For this purpose, the composition of a hot-dip ZnAlMg coating is assimilated to a dilute pseudo-binary system. 1D and 2D simulations of isothermal solidification are performed in a finite element solver by introducing nuclei as initial conditions. The results are qualitatively consistent with existing analytical solutions for growth velocity and concentration profiles, but the spatial domain of the simulations is limited by the required mesh refinement.

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo;Xin, Yong;Liu, Wenbo;Sun, Zhipeng;Chen, Ping;Sun, Dan;Zhou, Mingyang;Liu, Xiao;Yun, Di
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.226-233
    • /
    • 2022
  • In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

Transition Phase Diagram for Escape Rate of Nanospin System in an Applied Magnetic Field

  • Yoon, Dal-Ho
    • Journal of Magnetics
    • /
    • 제7권4호
    • /
    • pp.156-159
    • /
    • 2002
  • We have investigated the escape rate of nano-magnetic particle with a magnetic field applied along the easy axis. The model studied here is described by the Hamiltonian H=$K_1\hat{S}{_z^2}$$K_2\hat{S}{_y^2}$$g{\mu}_bB$ $\hat{S}_x(K_1>K_2>0)$ and the escape rate was calculated with in the semiclassical approximation. We have obtained a diagram for orders of the phase transition depending on the anisotropy constant and the external field. For $K_2$/$K_1>$0.85 the present model reveals the existence of the first order transition within the quantum regime.

Scheme and application of phase delay spectrum towards spatial stochastic wind fields

  • Yan, Qi;Peng, Yongbo;Li, Jie
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.433-455
    • /
    • 2013
  • A phase delay spectrum model towards the representation of spatial coherence of stochastic wind fields is proposed. Different from the classical coherence functions used in the spectral representation methods, the model is derived from the comprehensive description of coherence of fluctuating wind speeds and from the thorough analysis of physical accounts of random factors affecting phase delay, building up a consistent mapping between the simulated fluctuating wind speeds and the basic random variables. It thus includes complete probabilistic information of spatial stochastic wind fields. This treatment prompts a ready and succinct scheme for the simulation of fluctuating wind speeds, and provides a new perspective to the accurate assessment of dynamic reliability of wind-induced structures. Numerical investigations and comparative studies indicate that the developed model is of rationality and of applicability which matches well with the measured data at spatial points of wind fields, whereby the phase spectra at defined datum mark and objective point are feasibly obtained using the numerical scheme associated with the starting-time of phase evolution. In conjunction with the stochastic Fourier amplitude spectrum that we developed previously, the time history of fluctuating wind speeds at any spatial points of wind fields can be readily simulated.