1 |
Chandrasekharaiah, D.S. (1986), "Heat flux dependent micropolar thermoelasticity", Int. J. Eng. Sci., 24, 1389-1395.
DOI
|
2 |
Choudhuri, S.R. (2007), "On thermoelastic three-phase-lag model", J. Therm. Stress, 30, 231-238.
DOI
|
3 |
Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, Basel, 11(3), 413-430. https://doi.org/10.3390/sym11030413
DOI
|
4 |
Banik, S. and Kanoria, M. (2012), "Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical Cavity", Appl. Math. Mech. Eng. Ed., 33, 483-498.
DOI
|
5 |
Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nano-fluids past a porous plate". Processes, 8(3), 328. https://doi.org/10.3390/pr8030328
DOI
|
6 |
Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 33(35).1950439 https://doi.org/10.1142/S0217984919504396
DOI
|
7 |
Eringen, A.C. (1965), "Linear theory of micropolar elasticity", ONR Technical Report No. 29; School of Aeronautics, Aeronautics and Engineering Science, Purdue University, USA.
|
8 |
Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elast., 13, 125-147.
DOI
|
9 |
Dhaliwal, R.S. and Singh, A. (1987), "Micropolar thermoelasticity", Thermal Stresses II, Mechanical and Mathematical Methods, Series 2, Noth-Holland, the Netherlands.
|
10 |
El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phaselag linear micropolar thermoelasticity theory", Eur. J. Mech. Sol., 40, 198-208.
DOI
|
11 |
Eringen, A.C. (1966a), "A unified theory of thermo-mechanical materials", Int. J. Eng. Sci., 4, 179-202.
DOI
|
12 |
Eringen, A.C. (1966b), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-924.
|
13 |
Hosseini, S.M. (2020), "A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation", Struct. Eng. Mech., 73(3), 287-302. https://doi.org/10.12989/sem.2020.73.3.287
DOI
|
14 |
Marin, M., Ellahi, R., Vlase, S. and Bhatti, M.M. (2020), "On the decay of exponwential type for the solutions in a dipolar elastic body", J. Taibah University Sci., 14(1), 534-540. https://doi.org/10.1080/16583655.2020.1751963
DOI
|
15 |
Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2015), "Effect of rotation and initial stresses on generalized micropolar thermoelastic medium with three-phase-lag", J. Comput. and Theor. Nanosci., 12, 2030-2040. https://doi.org/10.1166/jctn.2015.3983
DOI
|
16 |
Mondal, S., Sarkar, N. and Sarkar, N. (2019), "Waves in dual-phase-lag thermoelastic materials with voids based on Eringen's nonlocal elasticity", J. Therm. Stress, 42(8), 1035-1050. https://doi.org/10.1080/01495739.2019.1591249
DOI
|
17 |
Nowacki, W. (1966), "Couple stresses in the theory of thermoelasticity III", Bull. Acad. Polon. Sci., Ser. Sci Tech., 14(8), 801-809.
|
18 |
Nowacki, W. and Olszak, W. (1974), "Micropolar thermoelasticity", CISM Courses and Lectures. No 151, Udine, Springer-Verlag, Vienna.
|
19 |
Othman, M.I.A. and Abd-Elaziz, E.M. (2015), "The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in dual-phase-lag model", J. Therm. Stress., 38(9), 1068-1082.
DOI
|
20 |
Othman, M.I.A., and Ahmed, E.A.A. (2015), "The effect ofrotation on piezo-thermoelastic medium using different theories", Struct. Eng. Mech., 56(4), 649-665. http://dx.doi.org/10.12989/sem.2015.56.4.649
DOI
|
21 |
Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with dual-phase-lag model", Microsys. Techno., 23, 4979-4987.
DOI
|
22 |
Sarkar, N. and Tomar, S.K. (2019), "Plane waves in non-local thermoelastic solid with voids", J. Therm. Stress., 42(5), 580-606. https://doi.org/10.1080/01495739.2018.1554395
DOI
|
23 |
Quintanilla, R. (2009), "Spatial behavior of solutions of the three-phase-lag heat equation", Appl. Math. Comput.. 213, 153-162.
DOI
|
24 |
Riaz, A., Ellahi, R., and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/heattransres.2019025622
DOI
|
25 |
Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. http://doi.org/10.12989/sem.2016.57.2.201
DOI
|
26 |
Shahid, A., Huang, H. Bhatti, M.M., Zhang, L. and Ellahi, R. (2020), "Numerical investigation on the swimming of gyrotactic microorganisms in nano-fluids through porous medium over a stretched surface", Mathematics, 8(3), 380. https://doi.org/10.3390/math8030380
DOI
|
27 |
Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621
DOI
|
28 |
Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transfer, 51, 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045
DOI
|
29 |
Scarpetta, E. (1990), "On the fundamental solutions in micropolar elasticity with voids", Acta. Mechanica, 82, 151-158.
DOI
|
30 |
Shanker, M. and Dhaliwal, R. (1975), "Dynamic coupled thermoelastic problems in micropolar theory I", Int. J. Eng. Sci., 13, 121-148.
DOI
|
31 |
Tauchert, T.R., Claus Jr, W.D. and Ariman, T. (1968), "The linear theory of micro- polar thermoelasticity", Int. J. Eng. Sci., 6, 36-47.
|
32 |
Xiong, Q.L. and Tian, X.G. (2016), "Transient magneto-thermoelasto-diffusive responses of rotating porous media without energy dissipation under thermal shock", Meccanica, 51, 2435-2447. DOI.10.1007/s11012-016-0377-3
DOI
|