• 제목/요약/키워드: Phase Compensation Algorithm

검색결과 223건 처리시간 0.024초

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

A Joint Scheme of AGC and Gain/Phase Mismatch Compensation for QPSK DCR

  • Song, Yun-Jeong;Lee, Ho-Jin;Ra, Sung-Woong;Kim, Young-Wan
    • ETRI Journal
    • /
    • 제26권5호
    • /
    • pp.501-504
    • /
    • 2004
  • This paper presents a simple gain/phase blind compensation algorithm with an automatic gain control (AGC) function for the adoption of the AGC function and compensation for gain/phase imbalances in quadrature phase shift keying (QPSK) direct conversion receivers (DCRs). The AGC function is interactively operated with the compensation algorithm for gain/phase imbalances. By detecting the gain sum and difference values between the I-channel and Q-channel, the combined AGC and gain imbalance compensation algorithm provides a simpler DCR architecture.

  • PDF

가변 스텝 적응적 루프를 이용한 직접 변환 방식 수신기에서의 이득 및 위상 불일치 보상 알고리즘 (I/Q Gain and Phase Imbalances Compensation Algorithm by using Variable Step-size Adaptive Loops at Direct Conversion Receiver)

  • 송윤정;나성웅
    • 한국전자파학회논문지
    • /
    • 제14권10호
    • /
    • pp.1104-1111
    • /
    • 2003
  • 본 논문에서는 직접 변환 방식의 수신기에서 발생하는 I 채널 및 Q 채널 간의 이득 및 위상 불일치를 보상하는 방법에 대해서 기술한다. 직접 변환 방식의 복조기에서의 이득 및 위상 불일치를 가변 스텝(Variable Step-size) 적응적 루프를 이용하여 블라인드(blind) 등화 방식으로 보상하는 알고리즘을 된 논문에서 제안한다. 이득 및 위상 불일치를 보상하기 위해 일반적인 블라인더 등화 기법을 이용할 경우 루프 이득에 따라 수렴속도와 지터(jitter) 영향이 trade-off 관계에 있다. 본 논문에서는 이들 문제를 극복하기 위하여 적응적 루프의 이득을 오차에 따라 가변 하는 방법을 제시한다. 본 논문에서는 가변 스텝 적응적 루프를 이용하여 빠른 수렴속도와 지터의 영향을 줄이도록 하는 방법을 제시하였고, 모의실험을 통하여 신호 손실 보상과 수렴 속도의 향상을 확인한다.

HDR-WPAN 시스템을 위한 주파수 옵셋 보상과 트래킹 알고리즘 성능분석 (Performance Analysis of Frequency Offset Compensation and Tracking Algorithms for HDR-WPAN System)

  • 박지우;오창헌
    • 한국항행학회논문지
    • /
    • 제9권2호
    • /
    • pp.140-146
    • /
    • 2005
  • 본 논문에서는 HDR-WPAN 시스템에 적합한 주파수 옵셋 보상과 누적 위상오차를 개선할 수 있는 트래킹 알고리즘을 제안하고 이에 대해 분석하였다. 주파수 옵셋 보상 알고리즘은 CAZAC sequence의 자기상관 특성을 이용하여 각 심벌 내 샘플 간 위상오차를 통해 coarse 주파수 옵셋과 fine 주파수 옵셋을 추정하게 된다. 그러나 HDR-WPAN 시스템은 payload에 pilot 심벌이 없기 때문에 payload 길이가 길어질수록 샘플 간 미소 위상오차가 누적되어 수신단의 성상도가 회전하게 된다. 따라서 트래킹 알고리즘을 통해 틀어진 누적 위상오차를 보상해야 한다. 트래킹은 성상도내 들어온 신호가 일정 영역을 벗어나게 되면, 벗어난 만큼의 크기 ${\theta}$을 곱해 누적된 미소 위상오차를 보상하게 된다.

  • PDF

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • 한국통신학회논문지
    • /
    • 제28권4C호
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.

AC 서보모터 제어 프로그램 구조 설계 및 구현 (Structure Design and Implementation of AC Servo Motor Control Program)

  • 김경아;최준영
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.209-215
    • /
    • 2023
  • This study proposes an AC servo motor control program structure and its implementation method to efficiently integrate 13 types of additional compensation algorithms into the basic FOC (field-oriented control) algorithm program. Various compensation algorithms are necessary to enhance the stability and performance of machine tools by compensating for interference from disturbances and vibrations. Each compensation algorithm is implemented as a separate, independent function and called from a switch-case statement in the ISR (interrupt service routine) of the PWM (pulse-width modulation) device. The advantages of this approach include facilitating not only debugging and testing but also reducing the possibility of errors during the program development phase. Thus, it is easy to add and activate each specific compensation algorithm for the program update during the program operation phase. The implemented motor control program was experimented with a single-axis feed shaft testbed driven by a commercial AC servo motor control drive board and a 750 Watts SPMSM (surface-mounted permanent magnet synchronous motor), and the results verified its normal operation and performance improvement.

Compensation PWM Technique for Extended Output Voltage Range in Three-Phase VSI Using Three Shunt Resistors

  • Shin, Seung-Min;Park, Rae-Kwan;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1324-1331
    • /
    • 2014
  • This paper proposes a compensation PWM technique for the extension of output voltage ranges in three-phase VSI applications using three shunt resistors. The proposed technique aims to solve the dead zone, which occurs in high modulation indexes. In the dead zone, two phase currents cannot be sampled correctly, so that the three-phase VSI cannot be operated up to the maximum output voltage. The dead zone is analyzed in detail, and the compensation PWM algorithm is developed. The proposed algorithm is verified by numerical analysis and experimental results.

단상 계통 연계형 인버터의 빠른 동특성을 갖는 계통 전압 센싱 DC 오프셋 보상 알고리즘 (DC offset Compensation Algorithm with Fast Response to the Grid Voltage in Single-phase Grid-connected Inverter)

  • 한동엽;박진혁;이교범
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1005-1011
    • /
    • 2015
  • This paper proposes the DC offset compensation algorithm with fast response to the sensed grid voltage in the single-phase grid connected inverter. If the sensor of the grid voltage has problems, the DC offset of the grid voltage can be generated. This error must be resolved because the DC offset can generate the estimated grid frequency error of the phase-locked loop (PLL). In conventional algorithm to compensate the DC offset, the DC offset is estimated by integrating the synchronous reference frame d-axis voltage during one period of the grid voltage. The conventional algorithm has a drawback that is a slow dynamic response because monitoring the one period of the grid voltage is required. the proposed algorithm has fast dynamic response because the DC offset is consecutively estimated by transforming the d-axis voltage to synchronous reference frame without monitoring one cycle time of the grid voltage. The proposed algorithm is verified from PSIM simulation and the experiment.

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.