• Title/Summary/Keyword: Phase Center Offset

Search Result 73, Processing Time 0.029 seconds

A Calibration Technique for Array antenna based GPS Receivers (배열 안테나 기반 GPS 수신기에서의 교정 방안)

  • Kil, Haeng-bok;Joo, Hyun;Lee, Chulho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.683-690
    • /
    • 2018
  • In this paper, a new signal processing technique is proposed for calibrating gain, phase, delay offsets in array antenna based anti-jamming minimum variance distortionless response (MVDR) global-positioning-system (GPS) receivers. The proposed technique estimates gain, phase and delay offsets across the antennas, and compensates for the offsets based on the estimates. A pilot signal with good correlation characteristics is used for accurate estimation of the gain, phase and delay offsets. Based on the cross-correlation, the delay offset is first estimated and then gain/phase offsets are estimated. For fine delay offset estimation and compensation, an interpolation technique is used, and specifically, the discrete Fourier transform (DFT) is employed for the interpolation technique to reduce the computational complexity. The proposed technique is verified through computer simulation using MATLAB. According to the simulation results, the proposed technique can reduce the gain, phaes and delay offset to 0.01 dB, 0.05 degree, and 0.5 ns, respectively.

Characterization of carrier-envelope-offset frequency of a femtosecond laser stabilized by the direct CEP locking method

  • Luu, Tran Trung;Lee, Jae-Hwan;Kim, Eok-Bong;Park, Chang--Yong;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • Characterics of carrier-envelope-offset frequency ($f_{ceo}$) of a femtosecond laser stabilized by the direct locking method were investigated using two f-to-2f interferometers. The stability of $f_{ceo}$ was comaparable to that achieved with a conventional PLL method.

  • PDF

Sliced Multi-modulus Blind Equalization Algorithm

  • Abrar, Shafayat;Axford, Roy A. Jr.
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.257-266
    • /
    • 2005
  • Many multi-modulus blind equalization algorithms (MMA) have been presented in the past to overcome the undesirable high misadjustment exhibited by the well-known constant modulus algorithm. Some of these MMA schemes, specifically tailored for quadrature amplitude modulation (QAM) constellations, have also been proved to fix the phase offset error without needing any rotator at the end of the equalizer stage. In this paper, a new multi-modulus algorithm is presented for QAM signals. The contribution lies in the technique to incorporate the sliced symbols (outcomes of decision device) in the multi-modulus-based weight adaptation process. The convergence characteristics of the proposed sliced multi-modulus algorithm (S-MMA) is demonstrated by way of simulations, and it is shown that it gives better steady-state performance in terms of residual inter-symbol interference and symbol-error rate. It has also been shown that the proposed algorithm exhibits lesser steady-state misadjustment compared to the best reported MMA.

  • PDF

A Study on Rotor Polarity Detection of SP-PMSM Using Offset Current Based on Current Control (전류 제어 기반 옵셋 전류를 이용한 단상 영구자석 동기 전동기의 회전자 자극 검출에 관한 연구)

  • Park, Jong-Won;Hwang, Seon-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1020-1026
    • /
    • 2019
  • In this paper, a rotor polarity detection algorithm is proposed to control the single-phase permanent magnet synchronous motors(SP-PMSMs) for high speed sensorless operation. Generally, the sensorless control of a SP-PMSM is switched to the sensorless operation in a specific speed region after the open loop startup. As a result, it is necessary to detect the rotor polarity to maintain a constant rotational direction of the SP-PMSM at the starting process. There, this paper presents a novel rotor polarity detection method using a high frequency voltage signal and offset current which is generated by current regulator. The proposed algorithm verified the effectiveness and usefulness of the rotor polarity detection through several experiments.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

A Design and Fabrication of 120 GHz Local Oscillator (120 GHz 국부발진기의 설계 및 제작)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • In this paper, a 120 GHz local oscillator(LO) for the sub-harmonic mixer in the THz transceiver with a carrier frequency of 240 GHz was designed and fabricated. A 120 GHz local oscillator was composed of 40 GHz PLL(Phase Locked Loop), 40 GHz BPF(Band Pass Filter), frequency tripler and 120 GHz BPF. The commercial model of the frequency tripler was used. The measured result of the 40 GHz PLL showed the phase noise of -105 dBc/Hz at the 100 kHz offset frequency. The measured result of 120 GHz BPF showed the insertion loss of 1.3 dB at center frequency of 119 GHz with bandwidth of 5 GHz. The output power of 120 GHz LO was measured to 6.6 dBm.

X-Band Oscillator Using SIW Cavity Resonator Based on Planar Circuit Technique (평면회로 기법에 의한 SIW Cavity 공진기를 이용한 X-밴드 발진기)

  • Lee, Hyun-Wook;Lee, Il-Woo;Nam, Hee;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • The substrate integrated waveguide (SIW) structure can be approximated as the rectangular waveguide using common dielectric substrate with via-holes. To realize reflection-type resonator, $50-{\omega}$ microstrip line can be used for coupling with the center plane of the cavity. The oscillator is designed to operate at 9.45 GHz using the reflection-type SIW cavity resonator. The phase noise of oscillator shows -98.1dBc/Hz at 100 KHz offset. In experiment, the reflection type SIW cavity resonator improves the loaded quality factor making the low phase noise oscillator possible. Due to the entirely planar structure of this resonator, this technique can also be adequate in oscillator applications for a low cost and low phase noise performance.

  • PDF

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

A Low Close-in Phase Noise 2.4 GHz RF Hybrid Oscillator using a Frequency Multiplier

  • Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper proposes a 2.4 GHz RF oscillator with a very low close-in phase noise performance. This is composed of a low frequency crystal oscillator and three frequency multipliers such as two doubler (X2) and one tripler (X3). The proposed oscillator is implemented as a hybrid type circuit design using a discrete silicon bipolar transistor. The measurement results of the proposed oscillator structure show -115 dBc/Hz close-in phase noise at 10 kHz offset frequency, while only dissipating 5 mW from a 1-V supply. Its close-in phase noise level is very close to that of a low frequency crystal oscillator with little degradation of noise performance. The proposed structure which is consisted of a low frequency crystal oscillator and a frequency multiplier provides new method to implement a low power low close-in phase noise RF local oscillator.

GNSS Antenna PCO/PCV and Position Changes due to the Switch IGS08/igs08.atx to IGS14/igs14.atx

  • Choi, Byung-Kyu;Sohn, Dong-Hyo;Yoon, Ha-Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2022
  • For precise GNSS applications, the antenna phase center correction (PCC) is absolutely required. The PCC magnitude can reach the centimeter level with the antenna structure. In the present study, we first investigate the phase center offset (PCO) and phase center variation (PCO) of three different antenna models in two different reference frames, IGS08/igs08.atx and IGS14/igs14.atx. Clear L1 and L2 PCO differences were found between IGS08 and IGS14. In addition, the PCV showed characteristics that is dependent upon the signal direction (azimuth and elevation angle). The remarkable thing is that the changes of a Dorne Margolin choke-ring antenna model (AOAD/MT DOME) was very small in two reference frames. In order to analyze changes in positions according to different reference systems, GNSS data obtained from DAEJ, SUWN, and TSKB stations were processed by the precise point positioning (PPP) method. We suggest that an antenna PCO/PCV can affect the precise GNSS positioning on the order of several millimeters in two different reference frames.