전류 제어 기반 옵셋 전류를 이용한 단상 영구자석 동기 전동기의 회전자 자극 검출에 관한 연구 A Study on Rotor Polarity Detection of SP-PMSM Using Offset Current Based on Current Control

박종원*, 황선환**★

Jong-Won Park^{*}, Seon-Hwan Hwang^{***}

Abstract

In this paper, a rotor polarity detection algorithm is proposed to control the single-phase permanent magnet synchronous motors(SP-PMSMs) for high speed sensorless operation. Generally, the sensorless control of a SP-PMSM is switched to the sensorless operation in a specific speed region after the open loop startup. As a result, it is necessary to detect the rotor polarity to maintain a constant rotational direction of the SP-PMSM at the starting process. There, this paper presents a novel rotor polarity detection method using a high frequency voltage signal and offset current which is generated by current regulator. The proposed algorithm verified the effectiveness and usefulness of the rotor polarity detection through several experiments.

요 약

본 논문에서는 단상 영구자석 동기 전동기의 고속 센서리스 운전을 위한 회전자 자극 검출 알고리즘을 제안한다. 일반적으 로 단상 영구자석 동기 전동기의 센서리스 운전은 오픈 루프 기동 후 특정 속도 영역에서 센서리스 운전으로 전환된다. 이와 같은 오픈 루프 기동 과정에서 단상 영구자석 동기 전동기의 일정한 회전 방향을 유지하기 위한 회전자 자극의 검출이 필수 적이다. 본 논문에서는 자기적 비대칭을 갖는 단상 영구자석 동기 전동기의 특성을 고려하여 전류 제어기 기반의 옵셋 전류 및 고주파 전압 신호를 활용한 회전자 자극 검출 기법을 제안한다. 제안한 알고리즘은 다수의 실험을 통하여 회전자 자극 검 출의 유효성과 유용성을 확인하였다.

Key words : Initial rotor polarity detection, Single-phase permanent magnet synchronous motor, Current regulator, High frequency voltage signal, Offset current

*Acknowledgment

^{*} R&D Center, GMB Korea Cooperation

^{**} Dept. of Electrical Engineering, Kyungnam University

 $[\]star$ Corresponding author

E-mail : seonhwan@kyungnam.ac.kr, Tel : +82-55-249-2744

This research was supported by the Ministry of Trade, Industry and Energy(MOTIE) through the 2018 Korea-Japan Export-linked Automotive Parts Technology Development Project(P035400007).

Manuscript received Sep. 11, 2019; revised Sep. 24, 2019; accepted Sep. 26, 2019.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

I. 서론

벡터제어를 이용한 영구자석 동기 전동기(Permanent Magnet Synchronous Motor, PMSM)는 유도 전동 기와 달리 고효율, 고출력밀도 및 우수한 응답성으 로 고속화 및 고정밀도화를 필요로 하는 공작기계 분야와 친환경자동차, 철도차량 및 대용량 구동 시 스템 등의 산업분야와 더불어 소형화와 경량화가 요구되는 가전분야에 적용이 되고 있다[1], [2]. 이 러한 현상은 에너지 효율 개선과 동일출력 대비 설 치 공간 및 무게 감소 등에 대한 필요성이 증가되 는 상황에서 향후 영구자석 동기 전동기의 설계와 제작 및 제어에 관한 연구와 적용이 지속적으로 확 대될 것이다.

일반적인 PMSM의 경우 권선의 결선 구조와 구동 전원에 따라 3상과 단상으로 분류할 수 있다. 대상 전동기인 단상 영구자석 동기 전동기(Single-phase Permanent Magnet Synchronous Motor, SP-PMSM) 는 인버터 및 전동기를 설계함에 있어 구조적으로 간단하지만, 영 토크의 발생 문제를 해결하기 위한 자기설계 및 제어의 복잡성이 존재한다. 또한, SP-PMSM를 구동함에 있어 요구되는 위치 센서의 회 로 구성 문제와 자기적 노이즈, 고온의 취약한 특 성을 개선하기 위한 센서리스 제어 알고리즘이 필 요하다[3-7].

일반적으로 SP-PMSM의 센서리스 제어는 역기 전력 기반을 통해 회전자 위치와 속도의 수학적 모 델을 통해 회전자 위치정보를 얻는 것이 가능하다. 하지만, 영속도 영역에서 역기전력의 정보 값을 추 정할 수 없기 때문에 별도의 오픈 루프 기동을 통 해 일정 속도까지 운전 후 센서리스로 운전을 하게 된다. 이는 오픈 루프 기동 기법을 포함하여 특정 한 방향으로 회전 및 과전류를 방지하기 위한 영속 도 영역에서의 자극 검출 기법을 요구하지만 대부 분 3상 PMSM 운전과 관련된 연구가 일반적이다 [1-5]. 반면, SP-PMSM의 센서리스 운전과 기동 기법에 관한 연구는 미흡한 실정이다[8].

본 논문에서는 비대칭 공극을 갖는 단상 영구자 석 동기 전동기의 영속도 영역에서 회전자 자극을 검출하는 알고리즘을 제시한다. 제안한 기법은 3상 PMSM의 회전자 자극 검출 기법과 달리 정지 상 태에서 SP-PMSM의 고정자에 고주파 전압신호 주입과 더불어 DQ변환 전류 제어기에 의한 옵셋 전류를 인가하여 자극을 검출한다. 앞서 언급했듯 이 SP-PMSM은 비대칭 공극 및 영구자석 특성에 의해 고주파 전압 신호만으로 자기포화정도를 검 출하기 어려울 수 있다[9-10]. 이에 전류 제어기에 의한 직류성분의 옵셋 전류를 인가하면 자기회로 를 안정적인 자기포화상태로 할 수 있다. 제안된 검출 기법은 비대칭 공극을 갖는 단상 영구자석 동 기전동기를 대상으로 다양한 고주파 전압 신호와 옵셋 전류 조건을 이용한 실험결과를 통해 자극 검 출 기법의 유용성과 타당성을 입증하였다.

Fig. 1. Single-phase full bridge inverter and SP-PMSM equivalent circuit.

그림 1. 단상 풀 브리지 인버터 및 SP-PMSM 등가 회로

Ⅱ. 본론

1. SP-PMSM의 수학적 모델링

그림 1은 단상 영구자석 동기 전동기(SP-PMSM) 의 등가회로와 단상 풀 브리지 인버터를 시스템 구 성도를 보여주고 있다. 이를 바탕으로 정상상태에 서의 SP-PMSM 고정자 전압 방정식을 표현하면 식 (1)과 같다.

$$v_o = R_s i_o + \frac{d\lambda}{dt} \tag{1}$$

여기서, v_o 와 i_o 은 SP-PMSM의 고정자 권선의 상전압과 상전류이다. R_s 와 λ은 고정자 권선의 저 항과 쇄교 자속을 나타낸다.

식 (1)의 고정자 쇄교 자속을 회전자의 영구자석 에 의한 쇄교 자속, λ_{pm}과 고정자 권선에 흐르는 전 류에 의한 자속, λ_s으로 정리하면 식 (2)와 같이 나 타낼 수 있다.

$$\lambda = \lambda_s + \lambda_{pm} \tag{2}$$

식 (2)를 식 (1)에 대입하여 전개하면 식 (3)과 같다.

$$v_s = R_s i_s + L_s \frac{di_s}{dt} + e \tag{3}$$

여기서, *L_s*와 *e*는 SP-PMSM의 고정자 권선의 인덕턴스와 역기전력이다.

또한, T_e 는 전기적 출력 토크로써 기계적 운동 방정식으로 나타내면 식 (4)와 같이 표현된다.

$$T_e = J_m \frac{d\omega_m}{dt} + B_m \omega_m + T_L \tag{4}$$

여기서, *J_m*은 시스템 전체의 관성 모멘트이며, *ω_m* 은 회전자 기계적 각속도, *B_m*은 마찰계수, *T_L*은 부 하 토크를 나타낸다.

2. 고주파 전압 신호 주입

영속도 영역에서 고주파 전압 신호만 주입하였을 때의 SP-PMSM 전압 방정식은 식 (3)으로부터 식 (5)로 나타낼 수 있다. 식 (5)에서 알 수 있듯이 고 주파 전압 신호를 주입하게 되면 정지 상태에서 ω, 은 '0'이 되며 고정자 권선 저항의 전압 강하를 무 시할 수 있다.

$$v_{s_inj} = \omega_{inj} L_s \, i_{s_inj} \tag{5}$$

여기서, $v_{s_{inj}}$ 와 ω_{inj} 은 영속도 영역의 SP-PMSM 에 주입된 고주파 전압 신호와 주파수이다.

이때, 3상 PMSM와는 달리 SP-PMSM은 주입된 고주파 전압 신호에 의한 교번 자계와 회전자 영구 자석의 특성에 의해 자기회로를 포화시키기 위한 불명확한 운전점에 있을 수 있다. 그림 2와 그림 3 은 옵셋 전류 인가 전의 공극 내 단상 영구자석 동 기 전동기의 λ-i 특성 곡선과 실험결과를 보여주 고 있다. 식 (5)의 고주파 전압 신호가 SP-PMSM 에 주입될 때 그림 2와 같이 포화가 발생되지 않는 범위 내 공극에서 교번의 자계가 발생한다. 이로 인해 그림 3과 같이 자기회로 포화에 따른 고정자 전류의 크기 편차를 확인하기 어렵고 이로 인해 회 전자 초기 극성에 따른 차이를 명확히 확인할 수 없어 회전자의 극성 검출이 어렵다. 따라서 본 논 문에서 제안하는 회전자 자극 검출 방법은 공극에 서의 자속 포화 정도를 명확히 파악하기 용이하도 록 전류 제어기 기반의 옵셋 전류를 고주파 전압 신호와 함께 추가 주입하여 회전자 극성에 따른 자 기회로의 포화 정도를 명확하게 하여 검출이 용이 하게 하고자 한다. 식 (6)은 고주파 전압 신호와 옵 셋 전류를 출력하기 위한 전류 제어기의 출력전압 지령을 나타내고 있다.

$$v_{s_initial} = v_{s_inj} + V_{offset} \tag{6}$$

Fig. 2. Linear and saturation regions of $\lambda - i$ characteristics curve before offset current.

그림 2. 옵셋 전류 인가 전의 $\lambda - i$ 특성 곡선

(a) N극일 때 전류 정보, (b) S극일 때 전류 정보

여기서, V_{offset}은 SP-PMSM에 옵셋 전류를 발생 시키기 위한 전류 제어기의 출력전압 지령이다. 제안한 초기 회전자 극성 검출은 그림 4와 같이 회전자의 극성에 따라 유도되는 옵셋 전류의 방향 성에 따른 운전점을 결정할 수 있다.

- Fig. 4. Linear and saturation regions of λi characteristics curve after offset current.
- 그림 4. 옵셋 전류 인가 후의 λ-i 특성 곡선의 선형 및 포화영역

Fig. 5. Waveforms under high frequency and offset current. (a) Current at N pole, (b) Current at S pole. 그림 5. 고주파 전압 및 옵셋 전류 주입 시 파형. (a) N극에서의 상전류, (b) S극에서의 상전류

그림 5에서 확인할 수 있듯이 SP-PMSM에 고주 파 전압 신호 및 옵셋 전류를 함께 주입하였을 경 우, 옵셋 전류에 의한 회전자의 N극 및 S극에 대해 자기 포화 정도가 상이함에 따라 유도된 고정자 상 전류 신호의 차이를 취함으로써 회전자 자극을 용 이하게 검출이 가능함을 볼 수 있다.

그림 6은 고주파 전압 신호에 전류 제어기 기반 의 옵셋 전류를 주입하는 경우, 초기 회전자 극성 을 검출하기 위한 제어 알고리즘 블록도를 나타내 고 있다. 제시된 블록도에서와 같이 옵셋 전류는 PI 전류 제어기를 통해 출력된 직류 전압 지령과 고주파 전압 신호가 함께 전동기의 고정자에 인가 되는 것을 볼 수 있다. 샘플링된 전류는 고주파 전 압에 의한 주파수 성분을 포함하고 있기 때문에 저 역통과필터 이후 직류 성분이 전류 제어기에 반영 되도록 구성하였다.

3. 제안한 회전자 초기 극성 검출 알고리즘

이 절에서는 SP-PMSM에 전류 제어기를 이용한 옵셋 전류 및 고주파 전압 신호 주입에 의한 회전 자 극성 검출 과정을 기술하고자 한다. 그림 6에서 SP-PMSM에 주입되는 전압은 식 (7)로 정리할 수 있다.

$$v_{s_initial} = v_{s_inj} + V_{offset} = V_m \sin \theta_{inj} + V_{offset}$$
(7)

여기서, V_m은 주입된 고주파 전압 신호의 진폭이 며, θ_{inj}은 주입된 고주파 전압 신호의 위상을 나타 내고 있다.

이를 바탕으로 식 (8)과 같이 고정자 전류 i_{ds_inj} 을 고주파 전압 신호 및 옵셋 전류에 의한 성분으로 표현가능 하다.

$$i_{ds_inj} = I_{offset} - I_m \cos \theta_{inj} \tag{8}$$

여기서, I_m는 고주파 전압에 의한 상전류의 크기 를 나타내며, I_{offset}은 옵셋 전류의 크기이다.

그림 6에서와 같이 고정자 전류를 제곱하면 식 (9)와 같이 표현할 수 있다.

Fig. 6. Block diagram of the rotor polarity detection algorithm. 그림 6. 회전자 극성 검출 알고리즘 블록도

$$(i_{ds_inj})^2 = I_m^2 \cos^2 \theta_{inj} - 2I_m I_{offset} \cos^2 \theta_{inj} + I_{offset}^2$$
(9)

식 (9)의 고정자 전류 제곱값을 고주파 전압 신호 의 위치각에 대해 적분을 취하면 식 (10)과 같이 직 류 성분만을 취할 수 있다. 이 직류 성분의 크기 편 차를 통해 회전자 자극의 극성을 검출할 수 있다.

$$\int_{0}^{2\pi} (i_{ds_inj})^2 \, d\omega_{inj} t = \frac{I_m^2}{2} + I_{offset}^2 \tag{10}$$

4. 실험결과

제안한 단상 영구자석 동기 전동기의 회전자 극성 검출 알고리즘을 검증하기 위해 DSP(Digital Signal Processor) 기반의 제어보드와 풀 브리지 인버터를 그림 7과 같이 구성하였다. 실험장치와 주요사양은 표 1과 같다. 전체적인 실험은 정지 및 과도상태에 서 제안한 알고리즘의 타당성을 확인하였다.

Fig. 7. Experimental set-up. 그림 7. 실험장치

I	Value	
Single-phase PMSM	number of poles	4
	rated voltage	25[Vdc]
	stator resistance	0.015[Ω]
	stator inductance	0.018[mH]
	back-emf constant	0.266[V/krpm]
Full bridge inverter	IGBT	600[V]
	capacitor	540[uF]
	current sensor	70[A]
	voltage sensor	500[V]

Table 1. Parameters of a SP-PMSM driving system. 표 1. SP-PMSM 구동 시스템의 파라미터

정지상태에서의 회전자 극성 검출 실험 결과는 그림 8과 같다. 실험 조건은 고주파 전압은 1.4 [V] 및 1[kHz]와 옵셋 전류 지령은 14[A]로 설정하였고 N극과 S극일 때의 검출된 직류 성분의 크기에 편 차가 존재함을 알 수 있다. 옵셋 전류 지령에 따른 N극과 S극 직류 성분의 편차를 정리하면 표 2와 같 다. 이 편차를 통해 회전자 극성을 용이하게 검출할 수 있다. 표 2에서 알 수 있듯이 옵셋 전류 지령이 클수록 자극 검출 시 유리함을 확인할 수 있다.

Fig. 8. Polarity Detection Experiment Waveform. (a) Current information of N-pole detection, (b) Current information of S-pole detection. 그림 8. 극성 검출 실험파형. (a) N극 검출의 전류 정보,

(b) S극 검출의 전류 정보

Offset current command	Polarity		Deviation
	N-pole	S-pole	Deviation
15[A]	10968.76	15423.72	4454.96
	10940.88	15443.79	4502.92
	10956	15413.86	4457.86
	10964.67	15431.68	4467
	10979.26	15408.56	4429.3
Average	10,961.91	15,424.32	4,462.41
8[A]	3990.31	5029.60	1039.29
	3992.59	5028.93	1036.34
	3990.47	5024.56	1034.09
	3989.78	5021.73	1031.95
	3993.71	5025.83	1032.12
Average	3,991.37	5,026.13	1,034.76

Table 2. Polarity detection value according to the offset current. 2. 옵셋 전류 지령에 따른 자극 검출 수치 퓨

Fig. 9. Experimental waveform of sensorless operation at 60,000[rpm].

그림 9. 센서리스 실험 파형(60,000[rpm])

Ⅲ. 결론

본 논문에서는 SP-PMSM에 대한 영속도 영역에 서 회전자의 극성 검출 알고리즘을 제안하고 이에 대한 유용성 및 타당성을 입증하였다. 이를 위해 SP-PMSM의 수학적 모델링 제시 및 고주파 전압 주입 기법에 기초하여 전류 제어기를 이용한 옵셋 전류 인가에 따른 자기회로의 특성 분석과 전류 제 어를 통한 과전류의 위험을 방지하기 위한 빠른 검 출과 구현이 용이한 자극 검출 기법을 제안하였다. 다수의 실험을 통해 제안한 알고리즘의 타당성과 효용성을 확인하였고 이를 통해 SP-PMSM의 안 정적인 기동성과 정방향 운전 및 고속 센서리스 운 전이 됨을 확인할 수 있었다.

References

[1] W. S. Park, K. Y. Cho and H. W. Kim, "Analysis of influence of parameter error for extended E MF based sensorless control and flux based sessorless control of PM synchronous motor," *Journal of the Korean Academia–Industrial Cooperation Society*, Vol.20, No.3, pp.8–15, 2019. DOI: 10.5762/KAIS.2019.20.3.8

[2] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, "Sensorless control strategy for salient pole PMSM based on extended EM F in rotating reference frame," *IEEE Trans. on Industry Applications*, Vol.38, No.4, pp.1054–1061, 2002. DOI: 10.1109/TIA.2002.800777 [3] Y. Lai, F. Shyu and S. Tseng, "New initial position detection technique for three-phase brushless DC motor without position and current sensors," *IEEE Trans. on Ind. Appl.*, Vol.39, pp.485-491, 2003. DOI: 10.1109/TIA.2003.809450
[4] D. Kim, K. Lee, B. Kim and B. Kwon, "A novel starting methods of the SPM-type BLDC motors without position sensor for reciprocating compressor," *IEEE Industry Application Conf. (IAS)*, vol.2, pp.861-865, 2006.

DOI: 10.1109/IAS.2006.256626

[5] L. Ying and N. Ertugrul, "A starting strategy for a robust position sensorless technique in non-salient PM AC motor drives," *IEEE Power Electronics and Motion Control Conf.(IPEMC)*, Vol.2, pp.1028–1032, 2004.

[6] J. Seo, J. Yoo and T. Jung, "Design on notch structure of stator tooth to reduce of cogging torque of single-phase BLDC motor," *2015 18th International Conf. on Electrical Machine and Systems (ICEMS)*, 2015.

DOI: 10.1109/ICEMS.2015.7385273

[7] C. Chiu, Y. Chen, and W. Jhang, "Properties of cogging torque, starting torque, and electrical circuits for the single-phase brushless DC motor," *IEEE Trans. on Magnetics*, Vol 44, No.10, pp.2317–2323, 2008.

DOI: 10.1109/TMAG.2008.2000761

[8] L. Iepure, I. Boldea and F. Blaabjerg, "Hybrid I-f starting and observer-based sensorless control of single-phase BLDC - PM motor drives," *IEEE Trans. on Ind. Electr.*, Vol.59, No.9, pp.3436–3444, 2012. DOI: 10.1109/TIE.2011.2172176

[9] C. Chiu, Y. Chen, Y. Liang and R. Liang, "Optimal driving efficiency design for the single phase brushless DC fan motor," *IEEE Trans. on Magnetics*, Vol.46, No.4, pp.1123–1130, 2010.

DOI: 10.1109/TMAG.2009.2035051

[10] K. Jiabao, G. Qiang, L. Xiaolu, H. Xiao, L. Gang and L. Jianyu, "A rotor position detecting method based on high frequency signal injection for electrically excited synchronous motors," *IEEE Power Electronics and Motion control*

Conf.(IPEMC-ECCE Asia), 2016. DOI: 10.1109/IPEMC.2016.7512388

Jong-Won Park (Member)

2001 : B.S. degree in Control and Measurement Engineering, Pukyong National University.2003 : M.S. degree in Mechanical Engineering, Pukyong National University.

2003~2005 : Researcher, R&D Center for KAERI, 2005~2008 : Researcher, R&D Center for Hyoseong Electric Cooperation.

2008~Present : Researcher, R&D Center for GMB Korea Cooperation.

Seon-Hwan Hwang (Member)

2004 : B.S. degree in ElectricalEngineering, Pusan National University.2006 : M.S. degree in ElectricalEngineering, Pusan National University.2011 : Ph.D. degree in ElectricalEngineering, Pusan National University.

2011~2012: Postdoctoral Researcher, Center for Advanced Power Systems(CAPS), Florida State University, Tallahassee, FL, USA. 2012~Present: Professor in Department of Electrical Engineering, Kyungnam University.