• Title/Summary/Keyword: Phase Angle

Search Result 2,004, Processing Time 0.032 seconds

Analysis of Relationship between Standard Depth of Penetration Skin Effect and Phase Angle of Defect Signal of Eddy Current Testing (와전류(渦電流) 표준침투(標準浸透) 깊이 표피효과(表皮效果)와 결함신호(缺陷信號) 위상각(位相角)의 관계해석(關係解析))

  • Chung, Tae-Eon;Chang, Kee-Oak;Park, Dae-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 1985
  • An experiment to investigate the rate of change of phase angle of eddy current output signal caused by outer surface defect of nonferromagnetic tube by variation of standard depth of penetration and variation of percent of tube wall penetration was carried out. The results of the experiment show that the phase angle of defect signal is increased with decreasing the standard depth of penetration or the depth of defect. The results also show that the phase angle is decreased with increasing the skin effect of eddy current, and that the resolution is decreased with decreasing the depth of defect.

  • PDF

Measurement of Ratio Error/Phase Angle Error of Potential Transformer using High Voltage Capacitance Bridge and Uncertainty Analysis (고전압 전기용량 브리지를 이용한 전압변성기의 비오차와 위상각 오차의 측정과 불확도 분석)

  • Kwon, Sung-Won;Lee, Sang-Hwa;Kim, Myung-Soo;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.134-141
    • /
    • 2006
  • A potential transformer(PT) has ratio error and phase angle error. Precise measurement of the errors of PT can be achieved using high voltage capacitance bridge, high voltage capacitor and low voltage capacitor. The uncertainty for this method is evaluated and found to be $20{\times}10^{-6}$ in both ratio error and phase angle error. The values measured for PT using the method are well consistent with the those measured for same PT in NMIA(National Measurement Institute of Australia) within the corresponding uncertainty.

Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement Equipment (전압변성기 비교 측정 장치의 비오차 및 위상각 오차의 직선성 평가기술)

  • 정재갑;박영태;권성원
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.470-474
    • /
    • 2004
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of burden of VT used. A method of evaluation for linearity of ratio error and phase angle error in VT measurement equipment have been developed using the standard resistance burdens, with negligible AC-DC resistance difference less than $10^-6$. These burden consists of five standard resistors, with nominal resistance of 100 $\Omega$, 1 k$\Omega$, 10 k$\Omega$, 100 k$\Omega$, and 1 M$\Omega$. The developed method has been applied in VT measurement equipment of industry and the validity of the developed method has been verified by showing the consistency of the result of linearity obtained using VT with wide ratio error.

PLL Method Using The Improved Discrete Fourier Transform (개선된 DFT를 이용한 위상 추종방법)

  • Kim, Jae-Hyung;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.91-93
    • /
    • 2008
  • In this paper, novel phase angle following algorithm for the single phase grid-connected inverter is proposed. Gird-connected inverter needs phase angle detection for synchronization grid voltage with the inverter output. In case of single phase grid-connected inverter, zero crossing detection and virtual 2-phase PLL using digital all pass filter or digital low pass filter are used conventionally. But these methods have a weakness for harmonics, noises and ripples. The proposed method of PLL achieve DFT(Discrete Fourier Transform) using Goertzel algorithm. It can extract fundamental voltage of grid. As a results, it can obtain phase angle using digital all pass filter without effect of harmonics, noises and ripples. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

Current Compensation Method of a Three Phase PWM Converter under Distorted Source Voltages (왜곡된 전원 전압 하에서 삼상 PWM 컨버터의 전류 보상 기법)

  • Park, Nae-Chun;Mok, Hyung-Soo;Ji, Jun-Keun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.352-359
    • /
    • 2008
  • This paper proposes a current compensation method of a three phase PWM converter. The phase angle of utility voltage is essential to control a PWM converter. In the case of using synchronous reference frame PLL to detect the phase angle of the distorted source, harmonics of source voltage cause the phase angle to be distorted. PWM converter control by the distorted phase angle results in input current harmonics. This paper proposes a current compensation method which can limit THD of Input currents below to 5% that is the harmonic current requirements by IEEE std. 519. Its validity is verified by simulation and experiment.

Two-Dimensional Mechanism of Hovering Flight by Flapping Wings (날개짓에 의한 공중정지비행의 이차원 메카니즘)

  • Kim, Do-Kyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF

Analysis of Pulsating Flow in Elastic Parallel Plates and an Elastic Pipe Model Using Moving Boundary Algorithm (이동경계 수치해법을 이용한 탄성평판 및 탄성관 모델내의 맥동유동 해석)

  • Park Hyung Gyu;Kim Charn-Jung;Lee Chong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.425-434
    • /
    • 2005
  • In order to analyze pulsating flows in elastic blood vessels, a method based on the ALE concept and finite volume method was reformed and modulated to include wall motion of elastic vessels and impedance phase angle(phase difference between wall motion and blood flow). Our study indicated wall shear rates(WSR) were significantly influenced by the wall motion and the impedance phase angle. For larger wall motion more than $5{\%},$ the computed WSR started to deviate from the results of the perturbation theory that assumed smaller wall motion. The study showed that oscillatory shear index increased as the impedance phase angle became more negative like $-70{\circ}\;or\;-80{\circ}$ due to reduced mean WSR and increased amplitude of WSR. This result indicated that hypertensive patients are more vulnerable to atherosclerosis than normal persons because of the role of more negative impedance phase angles usually observed in these patients.

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

New Phase Energization Strategies for the Minimization of Hybrid Step Motor Torque Ripples (하이브리드 스텝모우터의 토오크 리플 최소화를 위한 새로운 상여자방식)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Eum, Tae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.133-136
    • /
    • 1991
  • New phase-energization strategies are proposed to minimize torque ripple of closed-loop controlled 2-phase Bifilar Hybrid step motors. Lead angle and conduction angles are important parameters in minimizing torque ripple factors. The phase-energization control strategy that minimizes torque ripples for the given average torque is proposed. In this paper, Fourier series are applied to produce the average torque. The strategy is performed by controlling both lead angle and conduction angle of the input voltage wave-form for each phase.

  • PDF