• Title/Summary/Keyword: Pharmaceutical Compounds

Search Result 1,848, Processing Time 0.027 seconds

Synthesis and Biological Properties of New 5-Cyano-1,1-disubstituted Phthalans for the Treatment of Premature Ejaculation

  • Kim, Dong-Sung;Kang, Kyung-Koo;Lee, Kyung-Seok;Ahn, Byoung-Ok;Yoo, Moo-Hi;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1946-1950
    • /
    • 2008
  • The synthesis of new 5-cyano-1,1-disubstituted phthalans having aromatic and aminoalkyl groups at C-1 position of phthalan ring and their biological evaluation are described. Most compounds exhibited comparable ejaculation-retarding effects to citalopram. Of these compounds, 3a, e showed excellent efficacy in delaying ejaculation.

Monoamine Oxidase Inhibitors from the Whole Plant of Cayratia japonica

  • Han, Xiang-Hua;Hong, Seong-Su;Park, Seon-Soon;Huh, Jae-Doo;Lee, Kyong-Soon;Lee, Myung-Koo;Hwang, Bang-Yeon;Ro, Jai-Seup
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.256.1-256.1
    • /
    • 2003
  • As a part of our ongoing research to discover novel monamine oxidase (MAO) inhibitors of plant origin, we found that a MeOH extract from the whole plant of Cayratia japonica (Vitaceae) strongly inhibited the MAO activity in mouse brain. The EtOAc-soluble fraction was. therefore, subjected to the bioactivity-guided fractionations to isolate the active compounds. (omitted)

  • PDF

Highly Sweet Compounds of Plant Origin

  • Kim, Nam-Cheol;Kinghorn, A.-Douglas
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.725-746
    • /
    • 2002
  • The demand for new alternative "low calorie" sweeteners for dietetic and diabetic purposes has increased worldwide. Although the currently developed and commercially used highly sweet sucrose substitutes are mostly synthetic compounds, the search for such compounds from natural sources is continuing. As of mid-2002, over 100 plant-derived sweet compounds of 20 major structural types had been reported, and were isolated from more than 25 different families of green plants. Several of these highly sweet natural products are marketed as sweeteners or flavoring agents in some countries as pure compounds, compound mixtures, or refined extracts. These highly sweet natural substances are reviewed herein.

Synthesis of Tetrazolo[1,5-a]quinoxaline based Azetidinones & Thiazolidinones as Potent Antibacterial & Antifungal Agents

  • Kumar, Shiv;Khan, S.A.;Alam, Ozair;Azim, Rizwan;Khurana, Atul;Shaquiquzzaman, M.;Siddiqui, Nadeem;Ahsan, Waquar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2260-2266
    • /
    • 2011
  • 4-Chlorotetrazolo[1,5-a]quinoxaline (III) was synthesized by azide (2+3) cycloaddition of 2,3-dichloroquinoxaline (II). Compound (III) on further refluxing with hydrazine hydrate furnished 4-hydrazinotetrazolo[1,5-a]quinoxaline (IV). Further refluxing of (IV) with different aromatic aldehydes in methanol yielded corresponding Schiff's bases V(a-j). Various 4-aminotetrazolo[1,5-a]quinoxaline based azetidinones VII(a-j) were synthesized by stirring the compounds V(a-j), at low temperature, with equimolar mixture of chloroacetylchloride & triethylamine in dry benzene, while 4-aminotetrazolo[1,5-a]quinoxaline based thiazolidinones VIII(a-j) were synthesized by refluxing Schiff's bases V(a-j) with thioglycolic acid in oil-bath. The structures of all the compounds were confirmed on the basis of $^1H$-NMR & FT-IR spectral data. All the newly synthesized compounds were screened for in-vitro antimicrobial activity against E. coli, S. aureus, K. pneumoniae & P. aeruginosa & antifungal activity against C. albicans. Few of them have exhibited the promising activity.

Antioxidative Activities of Phenolic Compounds Isolated from Inonotus obliquus (차가버섯으로부터 분리한 페놀성 화합물의 항산화효과)

  • Kim, Hyoung-Ja;Jin, Chang-Bae;Lee, Yong-Sup
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.164-169
    • /
    • 2007
  • ln our continued search for biologically active compounds from traditional medicine, we found that ethyl acetate fraction from Inonotus obliquus showed potent antioxidant activities on three different cell-free bioassay systems. Bioassay-directed chromatographic fractionation of the ethyl acetate fraction from Inonotus obliquus afforded four phenolic compounds, 4-(3,4-dihydroxyphenyl)-(E)-3-buten-2-one (1) , 3,4-dihydroxybenzaldehyde (2), protocatechuic acid (3) and caffeic acid (4) along with three sterols such as lanosterol (5), ergosterol peroxide (6) and 9,11-dehydroergosterol peroxide (7). Among isolates, phenolic compounds (1-4) were assessed for antioxidant activities. Almost phenolic compounds showed potent DPPH and superoxide anion radicals scavenging and lipid peroxidation inhibitory activities indicating that these phenolic compounds contribute to the antioxidative activities of I. obliquus. Compounds 2-3 and 7 were isolated for the first time from this plant.

Constituents of the seeds of Cornus officinalis with Inhibitory Activity on the Formation of Advanced Glycation End Products (AGEs) (산수유 씨의 최종당화산물 생성저해활성 성분)

  • Lee, Ga-Young;Jang, Dae-Sik;Lee, Yun-Mi;Kim, Young-Sook;Kim, Jin-Sook
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.316-320
    • /
    • 2008
  • Ten compounds, (+)-pinoresinol (1), (-)-balanophonin (2), gallicin (3), vanillin (4), 4-hydroxybenzaldehyde (5), coniferaldehyde (6), betulinic acid (7), ursolic acid (8), 5-hydroxymethyl furfural (9), and malic acid (10), were isolated from a EtOAc-soluble fraction of the seeds of Cornus officinalis. The structures of these compounds were elucidated by spectroscopic methods as well as by comparison with reported values. Compounds 1, 2, and 4-7 were isolated from this species for the first time. All the isolates (1-10) were subjected to an in vitro bioassay to evaluate their inhibitory activity against advanced glycation end products (AGEs) formation. Among these, compounds 2 and 3 showed the significant inhibitory activity on AGEs formation with $IC_{50}$ values of 27.81 and 18.04${\mu}M$, respectively.

Inhibition of Phospholipase $C{\Upsilon}1$ and Cancer Cell Proliferation by Lignans and Flavans from Machilus thunbergii

  • Lee, Ji-Suk;Kim, Jin-Woong;Yu, Young-Uck;Kim , Young-Choong
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1043-1047
    • /
    • 2004
  • Thirteen compounds were isolated from the $CH_2Cl_2$ fraction of Machilus thunbergii as phospholipase $C{\Upsilon}1\;(PLC{\Upsilon}1)$ inhibitors. These compounds were identified as nine lignans, two neolignans, and two flavans by spectroscopic analysis. Of these, 5,7-di-O-methyl-3',4'-methylenated (-)-epicatechin (12) and 5,7,3'-tri-O-methyl (-)-epicatechin (13) have not been reported previously in this plant. In addition, seven compounds, machilin A (1), (-)-sesamin (3), machilin G (5), (+)-galbacin (9), licarin A (10), (-)-acuminatin (11) and compound 12 showed dose-dependent potent inhibitory activities against $PLC{\Upsilon}1$ in vitro with $IC_{50}$ values ranging from 8.8 to 26.0 ${\mu}M$. These lignans, neolignans, and flavans are presented as a new class of $PLC{\Upsilon}1$ inhibitors. The brief study of the structure activity relationship of these compounds suggested that the benzene ring with the methylene dioxy group is responsible for the expression of inhibitory activities against $PLC{\Upsilon}1$. Moreover, it is suggested that inhibition of $PLC{\Upsilon}1$ may be an important mechanism for an antiproliferative effect on the human cancer cells. Therefore, these inhibitors may be utilized as cancer chemotherapeutic and chemopreventive agents.

Biosynthesis of Three Chalcone β-D-glucosides by Glycosyltransferase from Bacillus subtilis ATCC 6633

  • Fei, Yinuo;Shao, Yan;Wang, Weiwei;Cheng, Yatian;Yu, Boyang;He, Xiaorong;Zhang, Jian
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.174-180
    • /
    • 2021
  • Chalcones exhibit multiple biological activities. Various studies have attempted to modify the structure of chalcones with a special focus on the addition of substituents to the benzene rings. However, these chemical modifications did not improve the water solubility and bioavailability of chalcones. Glycosylation can markedly affect the physical and chemical properties of hydrophobic compounds. Here, we evaluated the ability of a highly promiscuous glycosyltransferase (GT) BsGT1 from Bacillus subtilis ATCC 6633 to biosynthesize chalcone glucosides. Purified BsGT1 catalyzed the conversion of 4'-hydroxychalcone (compound 1), 4'-hydroxy-4-methylchalcone (compound 2), and 4-hydroxy-4'-methoxychalcone (compound 3), into chalcone 4'-O-β-D-glucoside (compound 1a), 4-methylchalcone 4'-O-β-D-glucoside (compound 2a), and 4'-methoxychalcone 4-O-β-D-glucoside (compound 3a), respectively. To avoid the addition of expensive uridine diphosphate glucose (UDP-Glc), a whole-cell biotransformation system was employed to provide a natural intracellular environment for in situ co-factor regeneration. The yields of compounds 1a, 2a, and 3a were as high as 90.38%, 100% and 74.79%, respectively. The successful co-expression of BsGT1 with phosphoglucomutase (PGM) and UDP-Glc pyrophosphorylase (GalU), which are involved in the biosynthetic pathway of UDP-Glc, further improved the conversion rates of chalcones (the yields of compounds 1a and 3a increased by approximately 10%). In conclusion, we demonstrated an effective whole-cell biocatalytic system for the enzymatic biosynthesis of chalcone β-D-glucoside derivatives.

Synthesis and In Vitro Cytotoxicity of Cinnamaldehydes to Hyman Solid Tumor Cells

  • Kwon, Byoung-Mog;Lee, Seung-Ho;Choi, Sang-Un;Park, Sung-Hee;Lee, Chong-Ock;Cho, Young-Kwon;Sung, Nack-Do;Bok, Song-Hae
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 1998
  • Cinnamaldehydes and related compounds were synthesized from various cinnamic acids based on the $2^{I}$-hydroxycinnamaidehyde isolated from the bark of Cinnamomum cassia Blume. The cytotoxicity to human solid tumor cells such as A549, SK-OV-3, SK-MEL-2, XF498 and HCT15 were measured. Cinnamic acid, cinnamates and cinnamyl alcohols did not show any cytotoxicity against the human tumor cells. Cinnamaldehydes and realted compounds were resistant to A549 cell line up to 15 .mu.g/ml. In contrast, HCT15 and SK-MEL-2 cells were much sensitive to these cinnamaidehyde analogues which showed $ED{50} values 0.63-8.1{\mu}g/ml.$Cytotoxicity of the saturated aldehydes was much weak compared to their unsaturated aldehydes. From these studies, it was found that the key functional group of the cinnamaldehyde-related compounds in the antitumor activity is the propenal group.p.

  • PDF