Antioxidative Activities of Phenolic Compounds Isolated from Inonotus obliquus

차가버섯으로부터 분리한 페놀성 화합물의 항산화효과

  • Kim, Hyoung-Ja (Bioanalysis and Biotransformation Research Center, Division of Life Sciences, Korea Institute of Science & Technology, Kyung Hee East-West Pharmaceutical Research Institute, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Jin, Chang-Bae (Bioanalysis and Biotransformation Research Center, Division of Life Sciences, Korea Institute of Science & Technology, College of Pharmacy, Kyung Hee University) ;
  • Lee, Yong-Sup (Kyung Hee East-West Pharmaceutical Research Institute, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
  • 김형자 (한국과학기술연구원 생체대사연구센터, 경희대학교 약학대학) ;
  • 진창배 (한국과학기술연구원 생체대사연구센터) ;
  • 이용섭 (경희대학교 약학대학)
  • Published : 2007.06.30

Abstract

ln our continued search for biologically active compounds from traditional medicine, we found that ethyl acetate fraction from Inonotus obliquus showed potent antioxidant activities on three different cell-free bioassay systems. Bioassay-directed chromatographic fractionation of the ethyl acetate fraction from Inonotus obliquus afforded four phenolic compounds, 4-(3,4-dihydroxyphenyl)-(E)-3-buten-2-one (1) , 3,4-dihydroxybenzaldehyde (2), protocatechuic acid (3) and caffeic acid (4) along with three sterols such as lanosterol (5), ergosterol peroxide (6) and 9,11-dehydroergosterol peroxide (7). Among isolates, phenolic compounds (1-4) were assessed for antioxidant activities. Almost phenolic compounds showed potent DPPH and superoxide anion radicals scavenging and lipid peroxidation inhibitory activities indicating that these phenolic compounds contribute to the antioxidative activities of I. obliquus. Compounds 2-3 and 7 were isolated for the first time from this plant.

Keywords

References

  1. Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M. and Harman, D. (1987) Oxygen radicals and human disease. Ann. Intern. Med. 107:526-545 https://doi.org/10.7326/0003-4819-107-4-526
  2. Adelman, R., Saul, L. R. and Ames, N. B. (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. USA. 85: 2706-2708
  3. Lucas, E. H. and Ringler, R. L. (1957) Tumor inhibitors in Boletus edulis and other holobasidomycetes. Antibio. Chemotheraphy, 7: 1-4
  4. Ikegawa, J., Nakamishi, M., Uehara, N., Chihara, G. and Fukuoka, F. (1968) Antitumor action of some basidiomycetes especially Phellinus linteus. Gann. 59: 155-157
  5. Song, C. H., Moon, H. Y. and Ryu, C. H. (1997) Artificial cultivation of Phellinus linteus. Kor. J. Mycol. 25: 130-132
  6. Goro, C., Junji, H., Yukiko, Y., Yoshiko, A. and Fumoko, F. (1970) Fraction and purification of the polysaccharides with masked antitumor activity, especially lentinan from Lentinus edodes. Cancer Res. 30: 2776-2781
  7. Shivrina, A. N. (1967) Chemical characteristics of compounds extracted from Inonotus obliquus. Chem. Abstr. 66: 17271-17279
  8. Kahlos, K. and Hiltunen, R. (1983) Identification of some lanostane type triterpenes from Inonotus obliquus. Acta. Pharm. Fenn. 92: 200-224
  9. Mizuno, T., Zhuang, C., Abe, K., Okamoto, H., Kino, T., Ukai, S., Leclerc, S. and Meijer, L. (1999) Antitumor and hypoglycemic activities of polysaccharides from Sclerotia and Mycelia of Inonotus obliquus (Pers.: Fr.) pIL. (Aphyllophoromycetideae). Int. J. Med. Mush. 1: 301-316 https://doi.org/10.1615/IntJMedMushr.v1.i4.20
  10. Ludwiczak, R. S. and Wrzeciono, U. (1960) Chemical components of Inonotus obliquus. IV. Ergosterol. Roczniki Chemii. 34: 1701-1705
  11. Loviagina, E. V. and Shivrina, A. N. (1962) Steroids of the chaga fungus. Bio-khimiya. 27: 794-800
  12. Kahlos, K., Kangas, L. and Hiltunen, R. (1987) Antitumor activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus. Acta. Pharm. Fenn. 96: 33-40
  13. Lee, J. S., Kim, H. J., Park, H., and Lee, Y. S. (2002) New diarylheptanoids from the stems of Carpinus cordata. J. Nat. Prod. 65: 1367-1370 https://doi.org/10.1021/np020048l
  14. Toda, S., Kumura, M. and Ohnishi, M. (1991) Effects of phenolcarboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med. 57: 8-10 https://doi.org/10.1055/s-2006-960005
  15. Sanz, M. J., Ferrandiz, M. L., Cejudo, M., Terencio, M. C., Gil, B., Bustos, G., Ubeda, A., Gunasegaran, R. and Alcaraz, M. J. (1994) Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica. 24: 689-699 https://doi.org/10.3109/00498259409043270
  16. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods in Enzymology. 52: 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  17. Chun, H., Kon, K., Yung, H., Yang, J. Y., Kim, S. I., Chung, Y. C., Kang, S. K. and Jeon, S. S. (2005) Separation method of 4-(3,4-dihydroxyphenyl)-but-3-en-2-one from Inonotus obliquus via extraction with alcohol, extraction with water/alkane, extraction with ethyl acetate and purification by chromatography. Repub. Korean Kongkae Taeho Kongbo. KR 2005100879
  18. Mulvena, D., Webb, E. C. and Zerner, B. (1969) 3,4-Dihydroxybenzaldehyde, a fungistatic substance from green Cavendish bananas. Phytochemistry. 8: 393-395 https://doi.org/10.1016/S0031-9422(00)85436-9
  19. Das, V. S. R., and Rao, J. V. S. (1964) Phenolic acids of onion plant. Current Science. 33: 471-472
  20. Kahlos, K. (1994) The effects of some amino acids on growth and lipid production in Inonotus obliquus grown in vitro. Acta Biotechnologica. 14: 169-179 https://doi.org/10.1002/abio.370140210
  21. Yu, S. M., Kim, H. J., Woo, E.-R. and Park, H. (1994) Some sesquiterpenoids and 5a,8a-epidioxysterols from Solanum lyratum. Arch. Pharm. Res. 17: 1-4 https://doi.org/10.1007/BF02978238