• 제목/요약/키워드: Petroleum pitch

검색결과 60건 처리시간 0.031초

탄소/탄소 복합재를 위한 메조페이스 핏치의 안정화 (Stabilization of Mesophase Pitch for Carbon/Carbon Composites)

  • 임연수
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.817-824
    • /
    • 1997
  • Stabilization is a key stage in the production of advanced carbon/carbon composites (ACC) from mesophase pitch, to render the mesophase infusible and the prevention of puffing during the subsequent carbonization. It is generally known that stabilization process as well as properties of mesophase pitch has a great deal of influence on the properties of the resultant ACC. Hence, it is possible to infer the properties of ACC by examing the stabilized mesophase pitch. In this study, extractions by solvents or acidified solvents extraction were carried out from the A-240 petroleum pitch. The extracted pitches were made into mesophase by heat treatments. Oxidative stabilization by air and non-oxidative stabilization by a chemical free radical initiator were performed. When a soluble polymer is fully stabilized, it should become insoluble in solvents. This phenomenon was used to estimated the degree of stabilization. The non-oxygen stabilized mesophase pitch powder was compared with the air stabilized mesophase pitch powder. FTIR provided additional information on the functional groups.

  • PDF

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

전기방사를 이용한 석유계 피치가 코팅된 Si/C Fiber의 전기화학적 성능 (Electrochemical Performances of Petroleum Pitch Coated Si/C Fiber Using Electrospinning)

  • 윤재웅;이종대
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.439-445
    • /
    • 2022
  • 본 연구에서는 전기방사를 이용해 제조한 Si/C Fiber 표면에 실리콘과 석유계 피치를 코팅하여 전지의 용량 안정성을 개선하고자 하였다. TEOS와 PAN을 전기방사 Fiber의 전구체로 사용하여 DMF에 용해해 방사하였다. 전기 방사된 Fiber는 탄화, 환원, 피치 코팅 공정의 특성을 분석하여 최적 공정을 조사하였으며, TEOS와 PAN의 비율에 따라 제조한 음극 소재의 성능을 평가하였다. 탄화/환원 공정 후의 TEOS : PAN = 4 : 6 (CR-46)로 제조된 음극 복합 소재는 657 mAh/g의 용량을 보여주었다. 전기화학적 성능을 개선하기 위하여, CR-46 표면에 실리콘과 석유계 피치를 코팅하였다. 피치의 조성을 10 wt%로 고정하였을 때, 실리콘의 함량이 증가할수록 용량은 개선되지만, 안정성은 저하됨을 알 수 있었다. 실리콘의 조성을 10 wt%로 제조한 음극 복합 소재는 982.4 mAh/g의 높은 용량과 86.1%의 용량 안정성을 확인할 수 있었다. 고속 충·방전 특성을 분석하기 위한 율속 테스트에서는 80.2%의 용량비(5C/0.1C)를 나타내었다.

MCMB Synthesis using Coal Tar Pitch

  • Seo, Hyeon-Kwan;Suh, Jeong-Kwon;Hong, Ji-Sook;Suh, Dong-Hack;Lee, Jung-Min
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.79-85
    • /
    • 2003
  • MCMB (mesocarbon microbeads) has been synthesized from coal tar pitch, petroleum pitch and polymer compound generally. But yield of MCMB was low about 20~40 wt% and was not above 50 wt%. Neither MCMB was replaced with natural graphite because of economic performance, refining MCMB, and control of the particle size distribution. This study was performed to elevate yield of MCMB and to develop technique of particle size distribution. As the result, yield of MCMB that was synthesized from coal tar pitch increased more than 60 wt% about raw material and particle size of MCMB was restrained according to control of QI (quinoline insoluble) ingredient in raw pitch, heat treatment temperature and time.

  • PDF

Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber

  • Rhee, Inkyu;Kim, Jin Hee;Park, Sang Hee;Lee, Sungho;Ryu, Bong Ryeul;Kim, Yoong Ahm
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.22-29
    • /
    • 2017
  • The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.

Effect of Carbon Matrix on Electrochemical Performance of Si/C Composites for Use in Anodes of Lithium Secondary Batteries

  • Lee, Eun Hee;Jeong, Bo Ock;Jeong, Seong Hun;Kim, Tae Jeong;Kim, Yong Shin;Jung, Yongju
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1435-1440
    • /
    • 2013
  • To investigate the influence of the carbon matrix on the electrochemical performance of Si/C composites, four types of Si/C composites were prepared using graphite, petroleum coke, pitch and sucrose as carbon precursors. A ball mill was used to prepare Si/C blends from graphite and petroleum coke, whereas a dispersion technique was used to fabricate Si/C composites where Si was embedded in disordered carbon matrix derived from pitch or sucrose. The Si/pitch-based carbon composite showed superior Si utilization (96% in the first cycle) and excellent cycle retention (70% after 40 cycles), which was attributed to the effective encapsulation of Si and the buffering effect of the surrounding carbon matrix on the silicon particles.

Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Poo Reum;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.78-85
    • /
    • 2015
  • Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of $700^{\circ}C-1000^{\circ}C$ for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.

KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성 (Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors)

  • 이은지;권순형;최푸름;우종표;정지철;김명수
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.

열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구 (NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate)

  • 곽철환;서상완;김민일;임지선;강석창
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.42-48
    • /
    • 2021
  • 본 연구에서는 열분해 연료유를 이용하여 석유계 피치 기반 활성탄을 제조하였고, 이를 활용하여 일산화질소 가스 검출 센서를 개발하였다. 피치의 분자량 증가를 위해 피치 합성 시 중합 반응을 촉진시키는 폴리에틸렌 테레프탈레이트를 첨가하였다. 피치의 분자량 증가는 피치 기반 활성탄의 비표면적 및 미세기공 부피 증가에 기여하였고, 이는 활성탄 기반 센서의 일산화질소 가스 검출 특성 향상시켰다. 또한 테레프탈레이트 첨가 피치를 사용할 때 활성탄의 표면 산소 관능기 및 전도성 변화를 확인하고 테레프탈레이트 첨가가 활성탄의 물성 및 일산화질소 가스 검출 특성에 미치는 영향을 분석하였다.

석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Lithium Battery Anode Materials Using Petroleum Pitches)

  • 황진웅;이종대
    • 공업화학
    • /
    • 제28권5호
    • /
    • pp.534-538
    • /
    • 2017
  • 본 연구에서는 PFO (pyrolyzed fuel oil)의 개질을 통해 탄소전구체(피치)를 제조한 후, 유기용매를 통한 분자량 조절을 하고 탄화하여 음극소재를 제조하였다. 리튬이차전지 음극소재의 전기화학적 특성은 석유계 피치를 사용하여 조사되었다. 사용된 세 종류의 피치는 3903, 4001, 4002이며, 각 PFO를 $390^{\circ}C$ 3 h, $400^{\circ}C$ 1 h, $400^{\circ}C$ 2 h 열처리 하여 제조하였다. 제조된 헥산 불용성 피치의 물리적 특성은 XRD, TGA, GPC, SEM으로 분석되었다. 음극소재로서의 피치의 전기화학적 특성은 충 방전, 순환전압전류, 임피던스, 속도 테스트를 통해 조사되었다. 4001 피치를 통하여 제조된 음극소재와 $LiPF_6$ (EC : DMC = 1 : 1 vol%, VC 3 wt%)를 사용하여 제조한 반쪽 전지는 향상된 초기용량(310 mAh/g)을 보였으며, 초기 효율(82%), 2 C/0.1 C 속도특성(90%), 용량 유지율 85%의 특성을 보였다. 본 연구에서 제조된 피치는 사이클 특성과 속도특성이 향상됨을 알 수 있었다.