DOI QR코드

DOI QR Code

NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate

열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구

  • Kwak, Cheol Hwan (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Seo, Sang Wan (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Min Il (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
  • 곽철환 (한국화학연구원 C1가스.탄소융합연구센터) ;
  • 서상완 (한국화학연구원 C1가스.탄소융합연구센터) ;
  • 김민일 (한국화학연구원 C1가스.탄소융합연구센터) ;
  • 임지선 (한국화학연구원 C1가스.탄소융합연구센터) ;
  • 강석창 (한국화학연구원 C1가스.탄소융합연구센터)
  • Received : 2020.12.18
  • Accepted : 2020.12.31
  • Published : 2021.02.10

Abstract

In this study, a sensor for detection of nitric oxide (NO) gas was developed using petroleum pitch-based activated carbon which was synthesized from pyrolysis fuel oil (PFO). Polyethylene terephthalate (PET) was added to increase molecular weight by stimulating a polymerization of components in PFO during the pitch synthesis process. The increase in the molecular weight of pitch contributed to the improvement of textural properties of activated carbon, such as the specific surface area and micropore volume. It also enhanced the sensitivity of NO gas sensor based on the activated carbon. In addition, the effect of PET addition during the pitch synthesis on the surface oxygen content and conductivity of activated carbon was investigated. Finally, the correlation of the sensitivity with physical properties of activated carbon was analyzed.

본 연구에서는 열분해 연료유를 이용하여 석유계 피치 기반 활성탄을 제조하였고, 이를 활용하여 일산화질소 가스 검출 센서를 개발하였다. 피치의 분자량 증가를 위해 피치 합성 시 중합 반응을 촉진시키는 폴리에틸렌 테레프탈레이트를 첨가하였다. 피치의 분자량 증가는 피치 기반 활성탄의 비표면적 및 미세기공 부피 증가에 기여하였고, 이는 활성탄 기반 센서의 일산화질소 가스 검출 특성 향상시켰다. 또한 테레프탈레이트 첨가 피치를 사용할 때 활성탄의 표면 산소 관능기 및 전도성 변화를 확인하고 테레프탈레이트 첨가가 활성탄의 물성 및 일산화질소 가스 검출 특성에 미치는 영향을 분석하였다.

Keywords

References

  1. Y. Sun, E. Zwolinska, and A. G. Chmielewski, Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review, Crit. Rev. Environ. Sci. Technol., 46(2), 119-142 (2016). https://doi.org/10.1080/10643389.2015.1063334
  2. B.-S. Yu, J.-L. Jiang, and C.-C. Yang, Conversion of lanthanum and cerium recovered from hazardous waste polishing powders to hazardous ammonia decomposition catalysts, J. Hazard. Mater., 379, 120773 (2019). https://doi.org/10.1016/j.jhazmat.2019.120773
  3. M. Illbas, I. Yilmaz, and Y. Kaplan, Investigations of hydrogen and hydrogen-hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor, Int. J. Hydrog. Energy, 30, 1139-1147 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.016
  4. Y.-C. Chiang, P.-C. Chiang, and C.-P. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  5. M. I. Kim and Y.-S. Lee, Preparation of gas sensor from pitch-based activated carbon fibers and its toxic gas sensing characteristics, Appl. Chem. Eng., 25(2), 193-197 (2014). https://doi.org/10.14478/ace.2014.1006
  6. L. Gu and T. Ozbakkaloglu, Use of recycled plastics in concrete: A critical review, Waste Manag., 51, 19-42 (2016). https://doi.org/10.1016/j.wasman.2016.03.005
  7. A. M. Al-Sabagh, F. Z. Yehia, Gh. Eshaq, A. M. Rabie, and A. E. ElMetwally, Greener routes for recycling of polyethylene terephthalate, Egypt. J. Pet., 25, 53-64 (2016). https://doi.org/10.1016/j.ejpe.2015.03.001
  8. A. J. Babafemi, B. Savija, S. C. Paul, and V. Anggraini, Engineering properties of concrete with waste recycled plastic: A review, Sustainability, 10, 3875 (2018). https://doi.org/10.3390/su10113875
  9. M. Li, Y. Zhang, S. Yu, C. Xie, D. Liu, S. Liu, R. Zhao, and B. Bian, Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation, RSC Adv., 8, 30230-30238 (2018). https://doi.org/10.1039/C8RA04679D
  10. H. R. Hwang, W. J. Choi, T. J. Kim, J. S. Kim, and K. J. Oh, The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent, J. Anal. Appl. Pyrolysis, 83, 220-226 (2008). https://doi.org/10.1016/j.jaap.2008.09.011
  11. E. Vilaplana-Ortego, M. A. Lillo-Rodenas, J. Alcaniz-Monge, D. Cazorla-Amoros, and A. Linares-Solano, Isotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation, Carbon, 47(8), 2141-2142 (2009). https://doi.org/10.1016/j.carbon.2009.04.020
  12. H. Q. Nguyen and J. S. Huh, Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation, Sens. Actuators B Chem., 117, 426-430 (2006). https://doi.org/10.1016/j.snb.2005.11.056
  13. M. Penza, R. Rossi, M. Alvisi, G. Cassano, M. A. Signore, E. Serra, and R. Giorgi, Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors, Sens. Actuators B Chem., 135, 289-297 (2008). https://doi.org/10.1016/j.snb.2008.08.024
  14. N. R. Khalili, M. Campbell, G. Sandi, and J. Golas, Production of micro- and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon, 38(14), 1905-1915 (2000). https://doi.org/10.1016/S0008-6223(00)00043-9
  15. E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  16. J. Park, I. Hung, Z. Gan, O. J. Rojas, K. H. Lim, and S. Park, Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene, Bioresour. Technol., 149, 383-389 (2013). https://doi.org/10.1016/j.biortech.2013.09.085
  17. S. W. Seo, Y. J. Choi, J. H. Kim, J. H. Cho, Y. S. Lee, and J. S. Im, Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch, Carbon Lett., 29, 385-392 (2019). https://doi.org/10.1007/s42823-019-00028-w
  18. J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). https://doi.org/10.1016/j.jiec.2016.02.014
  19. J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee, and J. S. Im, Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF, Fuel, 167, 25-30 (2016). https://doi.org/10.1016/j.fuel.2015.11.050
  20. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide, Nanotechnology, 25, 025502 (2014). https://doi.org/10.1088/0957-4484/25/2/025502